LETTERS TO
THE EDITOR

Letters intended for publication should be a maximum of 500 words, 10 references, and one table or figure, and should be sent to the editor at the address given on the inside front cover. Those responding to articles or correspondence published in the journal should be received within six weeks of publication.

Whose standard is it, anyway?

Editor—In their recent article in Tobacco Control Bialous and Yach create the impression that international standards for the machine smoking of cigarettes were foisted on the smoking public unilaterally by the tobacco industry by its influence on the International Organization for Standardization (ISO) through control of CORESTA (Centre de Co-operation pour les Recherches Scientifiques au Tabac). They also allege, inter alia, that the ISO technical committee 89 (TC 89) has, through CORESTA, changed the methodology in order to produce lower smoke yield values to get round the European “tar” ceiling directives, and (2) misleading the public by developing lower “tar” cigarettes to beat the smoking machine, and then makes unjustified health claims about them. (“Standards” are documented agreements containing technical specifications or concise criteria to be used consistently as rules guidelines.)

In their article, Bialous and Yach concentrated predominantly on a few highly selective quotes from internal tobacco company documents. They appear not to have consulted much of the very large volume of scientific literature published on the subject. When this information is taken into account it becomes obvious that the very narrow and restricted literature base of Bialous and Yach’s analysis has resulted in them making factual errors, drawing wrong conclusions and writing inaccurate statements on many aspects of the subject.

Some of the reviewed literature on the subject shows clearly that the broad facts are as follows:

(1) Techniques relevant to the machine smoking of cigarettes were developed, and refined throughout the 20th century. The first standard was specified by the Federal Trade Commission (FTC), a US federal government agency, in 1966 and first used to test cigarettes in 1967. The CORESTA recommended method, similar in many respects to that of the FTC, was developed after the FTC standard and was published in 1969.

(2) There were small differences in the details of the smoking machine procedures in the various standard methods developed by the FTC and subsequently CORESTA, ISO and authorities in the UK, Germany, Canada, and elsewhere between 1969 and the late 1970s. These differences resulted in about a 10% difference in the “tar” yield of the same cigarette measured by authorities in Britain and Germany, for example. By the late 1980s it was recognised that this situation was unacceptable in view of pending European directives which specified “tar” ceilings for all cigarettes sold in member states across Europe from 1993. Consequently, the differences in methodology were harmonised in a common ISO standard method in 1991, developed following a considerable amount of inter laboratory comparisons of the developing methodology undertaken within CORESTA across 29 laboratories from 15 countries. This revised standard method is now used in all countries except the USA where the slightly different FTC method still continues to be used, and in Japan where some minor differences are used in their national standard. Changing to the ISO standard in the early 1990s, “tar” yields determined in the UK, for example, decreased by up to 0.5 mg while “tar” yields in Canada, for example, increased by up to 3 mg for some brands.

(3) The purpose of the smoking machine standards is to determine the “tar”, nicotine, and carbon monoxide content of cigarette smoke when the cigarette is smoked under precisely defined conditions, and hence to allow a comparison of the yields from different cigarettes. Such yields are not predictive of the yields humans obtain when smoking, nor were they ever expected to be so, since no two smokers smoke in the same way. This is why does a smoker smoke a cigarette the same way on each occasion. This purpose has been stated consistently many times, e.g.12-15

(4) Compensation by smokers when switching to a low “tar” cigarette has been discussed in the scientific literature for 40 years. The phenomenon was first published by the tobacco industry and tobacco industry scientists have published books and papers on the subject, e.g.16-21 The available evidence, although limited, indicates that compensation is partial in the short term (up to a few weeks), and that smokers switching from a higher to a lower “tar” yield cigarette in general obtain a reduction in smoke delivery.11

(5) Since the 1950s numerous health scientists have advocated that lower “tar” cigarettes should be developed on the grounds that they may represent a less hazardous form of smoking, e.g.12-15 Health authorities have consistently advised smokers to quit, but for those who choose to continue to smoke that they should smoke “light” cigarettes, e.g.16-21 The tobacco industry has responded to these health authorities by developing cigarettes with lower “tar” but has also followed public health advice by not advertising lower “tar” cigarettes as safe cigarettes.

RICHARD R BAKER
Research & Development Centre,
British American Tobacco,
Southampton SO15 8TL, UK

REFERENCES

3 DeBardeleben MZ, Wickham JE, Kuhn WF. The determination of tar and nicotine in cigarette smoke. Tobacco Control 2001;10:94-104

Editor—In a recent article, Bialous and Yach attempt “to describe the extent of the tobacco industry involvement in establishing international standards for tobacco and tobacco products.” They assert that “it is clear that the tobacco industry, through [CORESTA], play a major role in determining the scientific evidence and suggesting the standards that are eventually developed as international standards.” Finally, they conclude that “ISO’s tobacco and tobacco products standards are not adequate to guide tobacco products regulatory policies, and no health claims can be made based on [these] standards.” Moreover, along the way, these authors seem to suggest the impropriety of CORESTA’s involvement in the standards setting process and offer some examples that, they believe, support a contention that is in fact untrue.

CORESTA (Cooperation Centre for Scientific Research Relative to Tobacco) is an organisation devoted entirely to issues related to tobacco science. Those issues range from plant breeding and genetic practices to technological aspects of manufacturing and analytical determination of smoke yields. That the majority of worldwide tobacco science expertise resides within the tobacco industry should come as surprise to no one (as would be true for most industries facing technical challenges). That many of these same experts find themselves involved in CORESTA and International Organization for Standardization (ISO) TC-126 activities should, likewise, be of no surprise. Development of technical standards, whether within CORESTA or ISO or elsewhere, without relying on the best available technical expertise would, of course, be irrational.

Regarding the suggestion of impropriety, Bialous and Yach outline three areas they believe support their case. First, they claim “[ISO] standards are approved as recommended by CORESTA, with limited opportunity for significant amendments”.

Offered as an example is an excerpt of CORESTA’s minutes regarding DIS 11454, stating that the DIS (Draft

www.tobaccocontrol.com

Downloaded from http://tobaccocontrol.bmj.com/ on April 18, 2017 - Published by group.bmj.com
International Standard) will be published as an international standard with no changes other than editorial. What Bialous and Yach apparently fail to appreciate is that the ISO approval process leading up to the DIS stage involved a development period of at least four years and multiple balloting stages (opportu-
nities) for significant amendments. For example, balloting at the previous committee draft stage (ISO/TC 126 N 537, July 1995) generated nine pages of comments from 12 countries. The 1997 CORESTA minutes reflect only that at the DIS stage in the overall ISO process, no changes had been requested by ISO members other than those of an editorial nature.

Secondly, Bialous and Yach made a compound assertion, that “CORESTA works with ISO directly or that CORESTA works through one of ISO’s member bodies”.

CORESTA does have a liaison member status with ISO, but does not work with any of ISO’s member bodies.

Lastly, Bialous and Yach assert “CORESTA resists any interference with its independence by making efforts to keep overall control of the situation and the outcomes of ISO meetings”. Offered as support is a matter concerning updates to the ISO smoking methods. Again, an egregious misrepresentation has resulted. A CORESTA working group and the British Standards Institution (BSI) independently prepared editorial commentary on similar issues within the text of the ISO smoking methods. Writing to defer to the ISO process, CORESTA postponed an update to the existing CORESTA methods, instead wishing to wait for ISO to finish their deliberations.

Concerns of impropriety, Bialous and Yach offer examples that do not support their contention. Rather to the contrary, these examples serve as testament to the propriety of the CORESTA-ISO relationship.

We look forward to a continued dialogue in the area of standardisation of tobacco products.

Author’s reply

EDITOR—Mr Jacob and Dr Baker’s criticisms of our paper5 mostly indicate an incomplete reading of it. We believe our paper reached its primary of tobacco science expertise resides within the tobacco industry should come as surprise to no one” is correct. However, recent literature has shown that this expertise has not been used to benefit the health and safety of the consumers of tobacco products.12-14 It is also no surprise that many of the tobacco industry experts “find themselves involved in CORESTA and ISO TC-126 activities”, but it is unacceptable that these experts participate in the activities.

As for the three specific areas of criticism in Mr Jacob’s letter:

(1) From the description of the ISO standards approval process,1 the majority of work is done at the Technical Committee (TC) level, and final approval of a DIS (Draft International Standard) is by the TC as well. In the case of TC 126, with a majority of members representing the tobacco industry, and CORESTA being the organisation conducting the work on the proposed standards, amendments are referred back to the TC and to CORESTA. In the example offered, ISO/TC 126 SC 34 in our paper5 describes some of these comments and how they represent the tobacco industry’s perspective.

(2) The assertion that CORESTA works with ISO either directly or through one of ISO’s member bodies members of CORESTA, TC 126 and those involved in the process at member bodies such as British Standards Institution (BSI) and American National Standards Institute (ANSI). Although no official relation between CORESTA and ISO’s member bodies exists, it is clear that efforts are often agreed upon. In the example provided, at a CORESTA Scientific Committee meeting, a member from the Tobacco and Nicotine Emissions Testing (ETN) determination was sent to ISO via ANSI. (An unquoted example, from reference 45,9 states that CORESTA had prepared a draft standard on ambient air to be assessed at BSI)

(3) We saw no evidence that CORESTA accepts outsiders’ input in preparing standards forwarded to ISO, but it is clear that CORESTA now provides inputs into ISO standards and ISO standards are closer or identical.1 The following quote from the same document addresses how CORESTA planned to deal outside participation (by participation in the development, of a measurement method).

We appreciate the opportunity to address these comments, and Mr Jacob’s offer for a continued dialogue in the area of standardisation of tobacco products.

STELLA AGUINAGA BIALOUS
Tobacco Free Initiative, World Health Organization, Geneva, Switzerland
stell@biaulous.com

11 Short PL. Smoking and health item 7: the effect on marketing. 14 April 1977. BAT Co Minnesota Trial Exhibit 10,685.
Intermittent smokers are more likely than daily smokers to actively start the process of smoking cessation. Intermittent smokers probably also suffer less severe withdrawal symptoms during cessation attempts than do daily smokers and, therefore, have a greater potential for success. Intermittent smokers perceive quitting as not being very difficult. However, there are no studies concerning the prevalence of the desire to stop smoking among intermittent compared to daily smokers.

The public health survey in Malmö 1994 is a cross-sectional study. A total of 5600 individuals born in 1913, 1923, 1933, 1943, 1953, 1963, 1968, and 1973 were randomly selected from the general Malmö population and interviewed by a postal questionnaire in the spring of 1994. In each age group, 700 participants (350 men and 350 women) were interviewed. The participation rate was 71%. The desire to stop smoking item, “Do you want to stop smoking?”, had two alternative answers, “yes” and “no”, and the item was dichotomised accordingly. The smoking item contained four alternatives: never smoked, stopped smoking, daily smoker, and intermittent (non-daily) smoker. The sex differences in daily smoking, intermittent smoking, never smoked, and stopped smoking were calculated using t-tests (results only presented in text). The differences in proportions of daily and intermittent smokers that report a desire to stop smoking were also calculated with t-tests (results only presented in text). The proportions of daily and intermittent smokers that express desire to stop smoking were calculated separately using logistic regression in order to analyse associations between sociodemographic variables and desire to stop smoking (table 1). The SPSS software package was used.

A total of 56.4% of all men and 58.9% of all female smokers (both daily and intermittent) had expressed a desire to stop smoking (p < 0.001). The proportion of daily smokers was 24.5% among men and 23.7% among women (p < 0.001). Men were intermittent smokers to a slightly higher extent (8.7%) than women (6.5%) (p = 0.001). Only 34.9% of the men had never smoked, while 50.3% of the women had never smoked (p < 0.001). In contrast, 31.9% of the men had stopped smoking compared to only 19.8% of women (p < 0.001). A higher proportion (67.7%) of all daily smokers expressed a desire to stop smoking, compared to only 32.3% of all intermittent smokers (p < 0.001).

Table 1 presents the crude odds ratios (OR) and 95% confidence intervals of desire to stop smoking among daily smokers and intermittent smokers according to sociodemographic and smoking characteristics. The public health survey in Malmö 1994.

Desire to stop smoking among intermittent and daily smokers: a population-based study

Table 1

<table>
<thead>
<tr>
<th>Year of birth</th>
<th>Daily smoker</th>
<th>Intermittent smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>859</td>
<td>56.4</td>
</tr>
<tr>
<td>1968</td>
<td>107</td>
<td>65.4 (1.0)</td>
</tr>
<tr>
<td>1963</td>
<td>113</td>
<td>76.1 (1.0)</td>
</tr>
<tr>
<td>1953</td>
<td>152</td>
<td>73.7 (1.0)</td>
</tr>
<tr>
<td>1943</td>
<td>150</td>
<td>62.7 (1.0)</td>
</tr>
<tr>
<td>1933</td>
<td>110</td>
<td>64.5 (1.0)</td>
</tr>
<tr>
<td>1923</td>
<td>101</td>
<td>58.5 (0.3)</td>
</tr>
<tr>
<td>1913</td>
<td>49</td>
<td>28.6 (0.2)</td>
</tr>
<tr>
<td>Missing</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

Country of origin

<table>
<thead>
<tr>
<th>Country</th>
<th>Daily smoker</th>
<th>Intermittent smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>590</td>
<td>62.5</td>
</tr>
<tr>
<td>Other</td>
<td>277</td>
<td>65.7 (1.1)</td>
</tr>
<tr>
<td>Missing</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th>Years</th>
<th>Daily smoker</th>
<th>Intermittent smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 12 years</td>
<td>201</td>
<td>65.2</td>
</tr>
<tr>
<td>10-12 years</td>
<td>168</td>
<td>70.2 (1.3)</td>
</tr>
<tr>
<td>< 9 years</td>
<td>428</td>
<td>61.0 (0.8)</td>
</tr>
<tr>
<td>Others</td>
<td>804</td>
<td>56.2 (0.7)</td>
</tr>
<tr>
<td>Missing</td>
<td>19</td>
<td>28</td>
</tr>
</tbody>
</table>

Smurf user

<table>
<thead>
<tr>
<th>Smurf user</th>
<th>Daily smoker</th>
<th>Intermittent smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>701</td>
<td>63.1</td>
</tr>
<tr>
<td>Yes</td>
<td>35</td>
<td>74.3 (1.7)</td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
<td>44</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>Daily smoker</th>
<th>Intermittent smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>880</td>
<td>272</td>
</tr>
</tbody>
</table>
have been documented in cognitive and psychomotor performance. The smoking of intermittent smokers may be motivated by these effects.

The results further support the notion that intermittent smokers are a specific group of smokers with smoking cessation characteristics that differ from the characteristics of daily smokers.

MARTIN LINDSTROM
Department of Community Health, University Hospital MAS, Lund University, S 205 02 Malmö, Sweden, martin.lindstrom@umais.lu.se

SMOKING AMONG JAPANESE NURSING STUDENTS: A NATIONWIDE SURVEY

EDITOR—In some developed countries including Japan, smoking prevalence among nursing students tends to be the same or higher than that of the general female population of the same age group. In Japan, an earlier report on the prevalence of smoking among women in their 20s was recently reported, and this trend is assumed to be reflected in the smoking prevalence of nursing students, where young women are over represented.

To obtain data on smoking prevalence of nursing students, a nationwide survey was conducted among the students of nursing (three year programme), public health nursing (PHN), and midwifery schools. Students of PHN and midwifery are qualified as nurses, and involved in one year training to acquire qualification as PHN and midwives, respectively. The survey was conducted in October 2000 using self reported questionnaires.

In 2000, there were 465 three year nursing schools (total number of students: 66 430), 66 PHN schools (1679 students), and 73 midwifery schools (1420 students) in Japan. Among these, 27 nursing schools, 17 PHN schools, and 16 midwifery schools were selected at random, and the survey was carried out on all students in the selected schools. Between selected schools and non-selected schools, little difference was observed with respect to their geographical distribution and student volume size.

Each subject from the selected schools filled in the questionnaire, put it into an envelope, sealed and handed it to the person in charge. The questionnaire included the items of a previous survey on smoking behaviour among nurses, and eight items related to the nicotine dependency scale of Fagerstrom. The return rates were 93% (3866/4169) for the nursing schools, 91% (552/599) for the PHN schools, and 95% (3223/3433) for the midwifery schools. After excluding incompletely answered questionnaires, 3762, 530, and 303 responses were analysed, respectively.

The prevalence of smoking among women was 25% in the nursing schools, 13% in the PHN schools, and 22% in the midwifery schools. In the nursing schools, the prevalence of smoking increased as the grade advanced. In the third year, the prevalence of smoking was 31%, higher than that among the general population in their 20s (23%). As to male students in third year, the prevalence of smoking was nearly the same as that of the general population in their 20s (60%). Furthermore, the nicotine dependency among female daily smokers in the nursing schools was higher than that in the PHN schools or midwifery schools. Therefore, anti-smoking education in nursing schools is urgently needed. In this survey, smoking prevalence was lower among students in the PHN and midwifery schools. The difference occurred among those who had already qualified as nurses and wished to continue studying to acquire another qualification were less likely to smoke than those who were not in the same career level. It is therefore suggested that the prevalence of smoking among less educationally motivated students is lower. Adriaanse and colleagues reported that nurses who were motivated in their jobs had a tendency not to smoke, which is consistent with our results although our subjects were nursing students.

TAKASHI OHIDA
AIBO SAKURAI
AMM KAMAL
TOMOFUMI SONE
SHINTARO TAKEKUMA
FUJIO FUKUSHIMA*
Department of Public Health Administration, National Institute of Public Health Department of Public Health Nursing*, Tokyo, Japan tohida@issh.jp.jp

This survey was supported in part by a Health Science Grant from the Ministry of Health and Welfare, Japan (currently called Ministry of Health, Labor, and Welfare, Japan).

SMOKING IN MOVIES IN 2000 EXCEEDED RATES IN THE 1960S

EDITOR—Smoking in movies has been linked to increased smoking among teens. We have previously published data from 1960 through 1997 that shows that smoking fell from the 1960s through the 1980s, then increased during the 1990s. We used similar methods (analysis of a random sample of five of the top 20 grossing US films each year) to extend the data set through 2000 (fig 1).

We conducted a regression analysis of these data by fitting a quadratic model, with our analysis in time to the amount of tobacco use per hour. The equation, smoke/hour = 581 – 0.405 (± 0.19, p = 0.04) year + 0.0124 (± 0.0044, p = 0.09) year2, confirms that, after falling during the early part of this period, smoking...
Figure 1 Frequency of tobacco use (events per hour) in a random sample of top grossing films from 1960 through 2000. The films were watched in five minute intervals and each use of tobacco in a given interval was counted as a single event. The total number of events was then divided by the duration of the film.4

is now increasing significantly. Based on this regression equation, on average there were 7.3 instances of tobacco use per hour in films in 1960 compared with 10.9 in 2000. The messages continue to reflect tobacco industry marketing themes of glamour, rebelliousness, and independence, rather than the realities of addiction, suffering, and death.

KAREN KACIRK
STANTON A GLANTZ
University of California, San Francisco
San Francisco, CA 94143-0130,
USA
kacirkk@cvri.ucsf.edu,glantz@medicine.ucsf.edu

This work was supported by National Cancer Insti-
tute Grant CA-61021.

BOOK

Book reviews and books of interest to “Tobacco Control” should be sent to the editor at the address given on the inside front cover.

Smoke in their eyes

Smoke in their eyes: lessons in movement leadership from the tobacco wars. Michael Perschuck. Nashville, Tennessee: Vanderbilt University Press, 2001. There have been memorable dates, both glorious and infamous, that have defined aims and charted progress and setbacks for the US tobacco control movement. The most notable of these events have had global repercussions.

On 15 December 1953, the heads of four major US tobacco firms met in New York City’s Park Plaza Hotel, where they launched the Tobacco Industry Research Council and hammered out the seminal text of a nationwide newspaper ad, “A frank statement to cigarette smokers”. On 11 January 1964, US Surgeon General Luther Terry released the Report of the Advisory Committee on Smoking and Health, concluding “it is the judgment of the Committee that cigarette smoking contributes substantially to mortality from certain specific diseases and to the overall death rate”. At the Waxman Hearings on 14 April 1994, the “seven dwarfs”, chief executive officers (CEOs) of the top seven US tobacco companies, were photographed for posterity as they prepared to declare that “nicotine is not addictive”. At least one more date marks the US tobacco control calendar, but it evokes no signal image, conjures no immortal quote. And yet, on 3 April 1997, at the Sheraton Hotel in Crystal City, Virginia, an extraordinary meeting did take place. That Thursday afternoon, Geoffrey Bible and Steve Goldstone, CEOs of Philip Morris and RJ Reynolds, respectively, met in secret with trial lawyers and state attorneys general, hoping to hammer out a settlement of litigation pending against the tobacco industry. Along with the CEOs, the lawyers, the attorneys general, and their minions, there was one more participant at that meeting: Matthew Myers, vice president and general counsel of the National Center for Tobacco-Free Kids.

In Smoke in their eyes: lessons in movement leadership from the tobacco wars, Michael Perschuck describes the political path that led Myers to that Virginia hotel and chronicles what happened in the meeting’s wake. Perschuck, former head of the US Federal Trade Commission, founder and co-director of the Advocacy Institute, and longtime combatant in the tobacco wars, interviews many key players and makes innovative use of email records to “set the record straight” on the role of various advocates during the tumultuous debate over the 1997 “global” settlement and the 1998 McCain bill. However, as the author repeatedly makes clear, the book is as much an impassioned defence of Myers as it is an analysis of the colossal, scarring failures of tobacco control advocates during that time.

At its core, Smoke in their eyes pits Myers against Stanton Glantz, University of California professor of medicine and lead author of The cigarette papers. For Perschuck, the plausible, if arguable benefits of the McCain bill could have been realised if not for the schism cleaving former allies into hostile camps. According to Perschuck, great public health gains could have been realised had Glantz and his zealous followers not fragmented the debate to suit their purposes.

As a behind-the-scenes look at the personalities and polemics of both advocacy groups and political agencies, the book is a rousing success. Though there are few felicitous literary passages, Perschuck has obtained detailed accounts from former Surgeon General J C Everett Koop, former head of the Food and Drug Administration David Kessler, and other principal players, with the glaring exception of Glantz. The book’s central failing, however, is Perschuck’s unwillingness or inability to focus on Myers’ secret, unilateral decision to attend that first Virginia meeting.

Myers was like Caesar crossing the Rubicon, with just a slight difference or two. Firstly, the general neglected to tell the troops he’d crowned himself emperor. Then, he realised he didn’t know the way to the river’s edge. Those failings are paramount. Myers’ good intentions should not be doubted, but he paved the path to acrimonious, rancorous debate. The Center for Tobacco-Free Kids was not a well established entity in 1997 and many former allies felt betrayed by Myers’ “lone ranger” tactics. Once turned off, they could not easily be convinced to follow Myers anywhere, as demonstrated by the caustic, pitched battles between the rival ENACT and Save Lives, Not Tobacco coalitions.

The what-could-have-beens of the McCain bill are still being debated. The USA is again playing a negative role on the global tobacco stage, this time with respect to the Framework Convention on Tobacco Control. What is certain is that the tobacco industry knew what it wanted back in 1997 and still knows what it wants today.

Philosopher Isaiah Berlin famously bor-
rowed the dictum of the Greek poet Archilochus, who wrote: “The fox knows many things, but the hedgehog knows one big thing.” The tobacco industry is a huge, knowing hedgehog. Michael Perschuck’s insight and intellect help explain how the tobacco control movement has outfoxed itself lately, but his Manichean dichotomy of Myers-good, Glantz-bad does the movement a disservice. The hedgehog rolls along. The fox needs a new game plan.

STAN SHATENSTEIN
Editor, GLOBALink Tobacco News
5492-B Trans Island,
Montreal, Quebec,
Canada H3W 3A8
shatenstein@sympatico.ca

www.tobaccocontrol.com
Smoking in movies in 2000 exceeded rates in the 1960s

KAREN KACIRK and STANTON A GLANTZ

Tob Control 2001 10: 397-398
doi: 10.1136/tc.10.4.397b

Updated information and services can be found at:
http://tobaccocontrol.bmj.com/content/10/4/397.3

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://tobaccocontrol.bmj.com/content/10/4/397.3#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/