LETTERS

Letters intended for publication should be a maximum of 500 words, 10 references, and one table or figure, and should be sent to the editor at the address given on the inside front cover. Those responding to articles or correspondence published in the journal should be received within six weeks of publication.

Listening between the lines: what BAT really thinks of its consumers in the developing world

In an audio recording of the “Structured Creativity Conference” held in Hampshire, UK in June 1984, British American Tobacco (BAT) adds context to the written report of marketing and product applications. Employees are taped brainstorming creative ways to push their product in light of future marketing constraints and social pressure towards a smoke-free society. Project proposals included the “side-streaming low side-stream smoke cigarettes,” “front end lift” cigarette design to give the smoker more “impact” on the first puff, pleasant smelling sidestream smoke, and “urban” male between 18–30, and “aspiring lower middle” socioeconomic class—and says: “I have not gone into psychographics. I have no idea what the psychographics of the average black farmer is.”

Another conference participant ruminates, “We could sell them to the Palestinians if we made the plastic hard enough that you could rip the end off and put your shells in them…”

This discourse, not found on the written page, is significant difference between what is written and what is said. David Schechter, the former BAT lawyer, recently explained the “mental copy rule” to the US Department of Justice, which assumed that anything one would write could end up being used publicly or legally against the company. This leads to the obvious question: Are we overlooking important research tools in the form of non-written material?

Eclipse: does it live up to its health claims?

We read the recent article by Slade et al1 with great interest and agree that reasonable regulation focused on the development and appropriate evaluation of potentially reduced risk cigarettes is warranted. Furthermore, we agree with Slade et al that the results of our evaluation indicate that Eclipse may offer potential benefits to smokers. However, we disagree with several of the other conclusions drawn by the authors.

The article challenges the merits of Eclipse and questions the fundamental differences between Eclipse and other cigarettes. It is not possible within the context of this letter either to fully describe the scientific data that has been developed to characterise Eclipse or to address many of the criticisms raised in Slade’s article. However, we briefly address pertinent issues below and encourage interested parties to independently evaluate all of the available information.

Slade et al have inaccurately represented the claims that RJ Reynolds Tobacco Company (RJRT) has made regarding Eclipse. No cigarette is without risk, including Eclipse. Our advertising for Eclipse states: “The best choice for smokers who worry about their health is to quit. But Eclipse is the next best choice for those who have decided to continue smoking.” Our advertising also makes it clear that RJRT does not claim that Eclipse presents less risk of cardiovascular disease or complications with pregnancy.

In the absence of any existing regulatory standard, RJRT assessed Eclipse’s risk reduction potential using a four step scientific methodology that included chemical testing and analysis, biological and toxicological testing, human testing, and independent scientific verification. In general, the evaluation strategy utilised was consistent with strategies outlined by the Institute of Medicine Committee that addressed this subject.2 RJRT has conducted an extensive comparative evaluation of Eclipse and has presented this research at scientific meetings in the both the USA and internationally. The results of these and other studies may be reviewed on the Eclipse website (www.eclipsescience.com).

In addition, much of this research has been published in the peer reviewed literature. The weight of the evidence from this research clearly shows that, compared to other cigarettes, Eclipse may present smokers with less risk of cancer, chronic bronchitis, and possibly emphysema. An independent panel of scientific experts reviewed the science and reached conclusions consistent with RJRT’s claims.3

RJRT’s comparative studies were conducted using Kentucky reference cigarettes (K1RF and K1RF4) and leading low “tar” and ultra low “tar” commercial brand styles. Combined, the cigarettes selected for comparison to Eclipse are representative of the vast majority of cigarettes sold in the US market.4 By contrast the entire market segment of the very low yielding ultra low “tar” cigarettes used by Slade et al as a comparison collectively represent less than 1% of the market. Furthermore, one of the two cigarettes selected as a comparison (Now Box) does not have a measurable US Federal Trade Commission (FTC) “tar” yield.

2 URL: http://www.tobaccocontrol.org
3 URL: http://www.tobaccocontrol.org
4 URL: http://www.tobaccocontrol.org
5 URL: http://www.tobaccocontrol.org
6 URL: http://www.tobaccocontrol.org
7 URL: http://www.tobaccocontrol.org
8 URL: http://www.tobaccocontrol.org

M E Muggli
R D Hurt

Correspondence to: Monique E Muggli, 1345 Osceola Avenue, St Paul, MN 55103, USA, mmuggli@batbi.com

References

7. URL: http://www.tobaccocontrol.org/articles/ 2002/08/22/1029114163418.html
Comparisons of Eclipse mainstream smoke constituent yields to the yields of very low yielding ultra low "tar" cigarettes (Now Box and Carlton Soft Pack) obtained by machine smoking do not change the fact that Eclipse cigarettes may present smokers with less risk of certain smoking related diseases than other cigarettes. RJRT scientists have recently demonstrated Eclipse is significantly mutagenic on a per cigarette basis than either Carlton Soft Pack or Now Box over a wide range of machine smoking conditions. On a per cigarette basis, Eclipse was less mutagenic than Carlton Soft Pack under all machine smoking conditions tested and was less mutagenic than Now Box when evaluated using the machine smoking conditions mandated by both the Massachusetts Department of Health and the Canadian federal government. In addition, Eclipse was significantly less cytotoxic on both a per mg “tar” basis and a per cigarette basis under the same range of machine smoking conditions.

As noted by Slade et al., smokers typically take larger and more frequent puffs than those specified by the US Federal Trade Commission puffing regimen and they typically smoke Eclipse differently than their usual brand. It is essential that a weight-of-the-evidence approach, including studies in smokers, be used to characterise potential differences between Eclipse and other cigarettes. Urine mutagenicity studies conducted in smokers demonstrate that Eclipse cigarettes yield levels of tar and nicotine that are substantially lower than the US Federal Trade Commission machine measured yields of tar and nicotine. Smoking and Tobacco Control Monograph No. 12 of the National Cancer Institute, Department of Health and Human Services, National Institutes of Health, National Cancer Institute, 2001. [NIH Publication No. 02-507413.]

Furthermore, additional studies conducted in smokers have demonstrated reductions in bronchial inflammation and localization of the lower lung when smokers switched to Eclipse. These findings are consistent with reductions in smoking related diseases relative to other cigarettes currently on the market.

J E Swauger
RJ Reynolds Tobacco Co, Winston-Salem, North Carolina, USA

Correspondence to: James E Swauger, PO Box 1487, Winston-Salem, NC 27102-1487, USA; swauger@rjrt.com

Author’s reply

Swauger argues that based on the weight of the evidence, Eclipse, compared to other cigarettes, may present smokers with less risk of cancer and other smoking related diseases. He bases this conclusion on “weighting” the scientific research RJ Reynolds Tobacco (RJRT) has conducted on Eclipse. Our study drew the opposite conclusion. Our analysis of the Eclipse research suggests that Eclipse is no less toxic or more toxic than a number of conventional cigarette brands.

RJRT claims “there is no cigarette like Eclipse” based on a comparison of the smoke chemistry of Eclipse with a typical ultralight. Merit. We tested Eclipse against two other ultralight cigarettes, Now and Carlton, and found the smoke concentrations of four major carcinogens to be lower than Eclipse. This indicates that to be difficult since the control cigarettes currently on the market, including those specified by the US Federal Trade Commission are insufficient evidence to conclude that any of other products have been brought into the market place that make explicit or implied claims of being “safer” than conventional cigarettes. These include Omni, Advance, Accord, and a soon to be released Philip Morris product called SCOR. Our study highlights the need for regulation of these products and associated claims by independent agencies such as the US Food and Drug Administration (FDA). RJRT could help “Clear the Air” by supporting pending FDA legislation. Food and drug manufacturers are not allowed to introduce new products into the market and make claims based solely on their own internal research, and nor should tobacco manufacturers. If RJRT truly believes that Eclipse may reduce risks of lung cancer and other diseases, the company should request the FDA to evaluate its scientific research and claims before marketing it at the retail nation-

G N Connolly
Massachusetts Department of Public Health, 250 Washington Street, Boston, MA 02108-4619, USA; greg.connolly@state.ma.us

Seasonality in cigarette sales: patterns and implications for tobacco control

Cigarette smoking is the leading public health problem in the USA, contributing to over 400 000 deaths a year. Given its importance, the tobacco control community should be aware of all significant patterns in the consumption of cigarette products, including seasonality. This is relevant to efforts aimed at tobacco control. Unfortunately, little attention has been paid to the seasonal nature of smoking. Findings on seasonal patterns may have major implications for the timing of interventions designed to manage the tobacco problem, both in the USA and in other countries.

In this letter, monthly data for cigarette sales at the state level for the USA are analysed to test for the presence of seasonality and to characterise the phenomenon. The data used in this study are monthly figures for sales of cigarettes by wholesalers aggregated at the state level between January 1983 and July 2000. Until December 1997, the Tobacco Institute was responsible for their collection. For the period following this, the firm Orzechowski and Walker produced the data.
Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.

In the states.

Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.

In the states.

Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.

In the states.

Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.

In the states.

Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.

In the states.

Two methods were used to examine seasonality. The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon may be inferred to underlie the pattern. In the case of seasonality, a cycle of period 12 months would stand out, and the spectrogram of the data would be statistically different from that produced by a white noise or uniform random process (Bartlett’s test). The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle, indicating seasonality. In addition, for 46 out of the 51 locations studied, the spectrogram was significantly (5% level) different from that produced by a uniform random process (table 1, column 2).

Using the seasonality analysis, a number of indicators were generated. The p values in table 1, column 3 correspond to the null hypotheses of no stable seasonality in sales. At a significance level of 5%, the null hypothesis of no stable seasonality is rejected for all the states.

In percentage terms, the seasonal effect is large—column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months.
sales, and June, July, and August, a “high” season.
Possible causes of seasonality include the effect of climate on smoking behaviour (low in cold weather and high in mild weather, especially in view of now widespread indoor smoking restrictions across the USA), the timing of tax changes (December-January or June-July), the timing of the new fiscal year (June-July), the timing of school year (August-June), and the timing of quitting efforts tied to New Year’s resolutions (December-January). In the obvious extension to this research, the determinants of this potentially important statistical phenomenon will be analysed in detail.

The present findings demonstrate that sales of cigarettes in the USA have a strong seasonal component. This has potential implications for the timing of cessation initiatives and other time dependent policies. The phenomenon of seasonality could hold the key to significant advances in tobacco control and in the management of a leading public health problem.

S Chandra
Graduate School of Public and International Affairs,
University of Pittsburgh, Pittsburgh, Pennsylvania, USA
F J Chaloupka
Department of Economics, University of Illinois at Chicago, Chicago, Illinois, USA

Correspondence to: Siddharth Chandra, GSPIA, 3325 Wesley W Posvar Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; schandra@pitt.edu

Acknowledgments

The authors gratefully acknowledge the support of the Substance Abuse Policy Research Program of the Robert Wood Johnson Foundation for supporting this work. Comments from Jonathan Caulkins and the excellent research assistance of Ascarya and Djamaludin Abubakar are also gratefully acknowledged.

References

3 Orzechowski W, Walker RC. Monthly state-level data on tax-paid cigarette sales. Electronic file provided to Frank Chaloupka. (See also, for example, Orzechowski W, and Walker RC. The tax burden on tobacco: historical compilation, 1999. Arlington, Virginia: Orzechowski and Walker.)

Way-out developments at BATCO

Working in tobacco control, it is easy to get the impression that the tobacco industry is a united front, with all parties carefully avoiding internal divisions that might undermine the greater struggle against the “antis”. However, tobacco industry documents that have been made public as a result of litigation in the USA frequently reveal ruthless competition for market share, as well as intense suspicion about competitors’ activities. This was brought home to us recently when reading a 1977 document on “developments in the scientific field” by Dr Sydney J Green, then British American Tobacco’s (BAT’s) senior scientist for research and development. After several pages of unremarkable reports on industry and external research on low tar cigarettes and smoking and health, Green informed his readers about two “way-out” developments at BAT:

• Way-out development 1: “A way-out development is that of compounds (such as etorphine) which are 10,000 times as effective as analgesics [such as morphine and which are very addictive. It is theoretically possible (if politically unthinkable) to add analytically undetectable quantities of such materials to cigarettes to create brand allegiance. But this thought may suggest the possibility of such compounds occurring naturally.”

We are grateful to Dr Green for clarifying what “brand allegiance” really means for the tobacco industry.

• Way-out development 2: “Another way-out development, which arises from work done in a quite different area, is that it would now be quite feasible and quite inexpensive to produce an unacceptable off-taste in cigarettes from some factories for a prolonged period without approaching nearer than half to one mile.”

In the same spirit of scientific curiosity which no doubt motivated the BATCO researchers, we would be very interested to know the formula for this substance.

On a more serious note, while we were not able to come up with any plausible candidates for a substance that could make way-out development 2 feasible, we are concerned that Green was right about the feasibility of adding etorphine or some other addictive substance to cigarettes.

Green’s report followed an earlier memo from Keith D Kilburn to CI Ayres,” expressing
How to critique consultancy reports?

The recent proposals for smoke-free legislation in many countries have spawned a multitude of studies which attempt to predict the financial impact of such legislation. As described by Scoll et al in this issue of Tobacco Control, many of these studies fail to achieve basic quality standards and this is more likely when the tobacco industry funds the study. However, findings from such flawed studies can influence policy makers and it is essential that public health advocates have strategies to counter their impact.

In Hong Kong in 2001, the government proposed to make all workplaces, including catering venues, smoke-free.1 A consultancy report for the catering industry, funded by the tobacco industry, was published shortly after and concluded that the legislation would cause catering industry revenues to drop by 10.6% leading to job losses. This report was based on a survey of customers to catering venues, self reported spend on eating and drinking out, and self predicted changes in the event that catering venues were made smoke-free. Since the methods used were not made clear in the report, we had to attempt to validate or refute the report mainly by an assessment of its findings. We found the following questions useful:

(1) Was the sample used for the consultant’s survey representative of the population being studied (customers of catering venues)? Since we could not determine if sample selection was done properly, we had to look at sample characteristics. The prevalence of smokers was much higher than in other survey data indicating a bias in the sample.

(2) Did the data, when extrapolated/aggregated, agree with other standard data sources—for example, government statistics? Much of the basic data collected by the consultants was not disclosed in their report but in their case, they had to present some—for example, average weekly spends in the different types of catering venues. From these data we could estimate (a) expected weekly revenue in the catering industry, (b) approximate market shares for the different types of venue, and (c) weekly spend on eating out per household if the consultant’s data were valid. Each of these estimates was quite implausible when compared with data from the census and other government sources.

(3) Could the consultant’s findings be reproduced to shed light on the methods used? Using a subset of data based on random sampling, we tried to recreate the consultant’s findings by deliberately introducing biases and incorrect aggregations which we suspected were present in the consultant’s methods. In this way we were able to produce an almost identical set of results from the new data. On the other hand, when we analysed the new data in an appropriate fashion, we predicted a rise of 5% rather than a drop of nearly 11% in catering revenues.

The best means of influencing policy on smoke-free catering venues is to use objective outcome measures and data collected both before and after the intervention, as recommended by Siegel et al. However, very little research has been carried out with NRT during pregnancy and the level of interest in using NRT is not known.2 This letter reports the results of a survey to assess the level of interest in using NRT among pregnant smokers.

Across a seven month period pregnant smokers were identified using the patient administration system of a large district general hospital in south west London. Ethical approval was obtained and participants gave verbal consent via the receptionist. It was identified as smokers at their first antenatal booking visit were telephoned within one week of this visit and invited to take part in the survey. The interview took place during the initial telephone call or during a further call within 48 hours of the initial call. All statistical tests were two tailed.

Demographic information was obtained from patient records. All the women were asked “Can I just check, are you still smoking at the moment?” (“yes” or “no”). Those still smoking were asked “About how many a day would you say you are smoking at the moment?” and “Are you thinking about stopping?” (“yes” or “no”). Of the 207 smokers interviewed (fig 1) the large majority were not in professional/managersial occupations (85.0%, 176/207), were white (75.8%, 157/207), and attended their first antenatal booking visit in the hospital (66.7%, 138/207) rather than in the community. The mean (SD) duration of pregnancy was 18.6 (5.6) weeks and the mean (SD) reported number of cigarettes smoked per day was 7.3 (6.1).

Of those women reporting that they were thinking about stopping smoking 44.7% (67/150) expressed an interest in using NRT. Interest in NRT was higher among women who reported smoking more cigarettes per day (analysis of variance (ANOVA); F = 7.6,

References
p = 0.006; mean (SD) cigarettes a day: inter-
rested in NRT (n = 67) = 9.5 (6.3), not inter-
ested in NRT (n = 83) = 7.1 (4.2). Following current licensing regulations, 39.3% (59/150)
of the women wanting to stop smoking
reported smoking sufficient cigarettes per day (≥ 10) to be considered eligible for NRT. Interest in using NRT was significantly higher for those smoking at least 10 cigarettes a day (χ²; p = 0.03; 10 or more cigarettes a day: interested in NRT = 55.9% (33/59), less than 10 cigarettes a day: interested in NRT = 37.4% (34/91)). Overall, 22% (33/150) of those reporting wanting to stop smoking were both interested in NRT and eligible for NRT.

The results indicate a high level of interest in stopping smoking among pregnant women still smoking following their first antenatal booking and a moderate level of interest in using NRT. Fewer women were recorded as smokers at their first antenatal visit than would be expected from national data. This is likely to be because of the high number of Asian women in the local population. Encour-
gagingly, those women who were heavier smokers, and were therefore eligible for NRT, showed most interest in NRT. Around a quar-
ter of the smokers wanting to stop were both eligible for NRT and interested in using NRT. These findings add support to the argument for conducting further trials of NRT for preg-
nant smokers. The ultimate test of the accept-
bility of NRT for these women will be the

Voodoo cigarillos: bids in disguise?

As part of its routine monitoring of emerging
tobacco products, “Trinkets & trash: artifacts of the tobacco epidemic”, a collection of current and historic tobacco marketing (www.trinketsandtrash.org), recently identi-
fied a new tobacco product called Voodoo cigarillos. They are exclusively manufactured in India for the US based Kretek Inter-
national, a specialty tobacco distributor whose exclusive product line includes Djaram clove cigarettes, Darshan bids, and Dreams multi-
coloured and flavoured cocktail cigarettes.1

The Voodoo cigarillos we obtained were
flavoured and, as with bids, consisted of tobacco flakes wrapped in a leaf tied with a small string. Aside from a slightly larger and more uniform cylindrical shape, Voodoo cigarillos appear to be nearly identical to bids (fig 1). Only the name on the package would identify it as a cigarillo. Voodoo cigarillos appear to be wrapped in tendu leaf, which do not naturally contain tobacco.

So, we ask, is this new product a cigarillo or a bid with new packaging? Federal regula-
tions define a cigarette as any roll of tobacco wrapped in paper or in any substance not con-
taining tobacco.7 Voodoo cigarillos appear to be wrapped in tendu leaf, which do not naturally contain tobacco.

www.tobaccocontrol.com
Smoking in children’s picture books

The other day, one of the authors went to a public library with his 3 year old daughter to read some picture books to her. Various picture books, from classic to newly published, were available. Classic books are her favourite. First, she chose a book portraying adventures of a naughty monkey named Curious George (by HA Rey). He came to an industrialised country with a man in a yellow hat. My daughter pointed to a picture of the man holding a pipe between his lips. A smoking scene in a picture book for small children!

The next book she chose depicted an elephant named Babar (by Jean De Brunhoff) that fled from his country to Europe after his mother was killed by men. After coming back to his country with western technologies, he changed elephant society into Western-style society and became a king. Again, the King Babar was holding a pipe.

The third book was depicting a monster named Barbapapa living with François’ family (by Tison and Taylor). He had a mysterious ability to metamorphose into anything he desired. Unfortunately, in this attractive book, François’ father was always holding a pipe. Another supporting character was smoking a cigar. Smoking seems to be a symbol of manhood in these children’s picture books.

My daughter then opened books about Moominvalley (by Tove Jansson) and Tintin’s adventures (by Herge) in which some characters were smoking. Finally, I myself selected a book depicting Father Christmas (by Raymond Briggs). On Christmas Eve, Father Christmas delivered presents to children all over the world. After the labourious job, he took a rest smoking a cigar and a pipe.

Picture books reflect the norms or perceptions of our societies. These classic children’s books were first published in times when smoking was not widely acknowledged as harmful and a smoking male adult was one of the sex stereotypes. In addition, pipe smoking seems acceptable in such picture books compared with cigars or cigarettes which are seldom seen.

Caregivers frequently read picture books aloud to children at home, kindergartens, or daycare centres, which may have a considerable influence on preschool children. Young children receive strong messages from pictures. Seeing adult males smoking in picture books, they may take it as a desirable behaviour.

It would be unacceptable to remove smoking scenes from these classic books or eliminate the books themselves. What we can do is to become aware of the potential influence of these books and take a negative attitude to smoking when we read to children. Fortunately, the man in a yellow hat seems to have quit smoking in the new series of George’s adventures.

S Nakahara, S Wakai, M Ichikawa
Department of International Community Health, Graduate School of Medicine, The University of Tokyo, Japan

*Correspondence to: S Nakahara, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; shinji@m.u-tokyo.ac.jp

Getting them while they’re young in China. Submitted by Professor TH Lam, Hong Kong.
Smoke-filled rooms: a postmortem on the tobacco deal

Smoke and mirrors

Cigarettes are a major cause of premature death. Cigarettes are addictive. Secondhand smoke can be annoying, but is really not enough of a health risk to justify banning smoking in indoor environments. Payments to states in the Master Settlement Agreement were unjustified since cigarettes are self-financing. States actually save money because smokers die young. Lawsuits against the tobacco industry are without merit, since smokers have long known about the health risks. Continuing efforts to warn the public about the health risks of smoking are unwaranted since public awareness of these risks are now universal. Filters and low tar technology have made cigarette smoking safer, but more could be done to encourage cigarette manufacturers to produce a less toxic cigarette.

The government should focus on giving smokers information about the risks posed by different types of cigarettes, which would foster more competition in the development of safer cigarettes while at the same time preserving individual choice. Such are the views expressed by Harvard Law Professor W Kip Viscusi in his new book entitled, "Smoke-filled rooms: a postmortem on the tobacco deal." Viscusi's selective presentation of data on what consumers know, or don't know about the health risks of smoking, the dangers of secondhand smoke, the benefits of filtered and low tar cigarettes, and ultimately who should be held accountable for the massive toll caused by smoking cigarettes is breathtaking. This book leaves one with the impression that the cigarette industry and not the American public has been the victim in what has been a massive moneymaking grab by greedy trial lawyers and their starved state attorneys general. Viscusi acknowledges that he has spent a few too many hours in smoked filled rooms to be able to reasonably separate fact from fiction. However, one fact is crystal clear—Viscusi is not an unbiased observer of the tobacco industry. He appears to be a long-time friend of the tobacco lobby.

References

4 Hurt RD, Robertson CR. Prying open the door to the cigarette industry’s secrets about nicotine—the Minnesota tobacco trial. JAMA 1998;280:1173–81.

Disclosure
K Michael Cummings is not an unbiased observer of Dr Viscusi’s research and writings. He has served as a paid expert witness on behalf of plaintiffs counsel in several of the same cases in which Dr Viscusi also served as an expert for the cigarette industry. Dr Cummings is currently employed as a senior research scientist and is chairman of the Department of Health Behavior in the Division of Cancer Prevention and Population Sciences at the Roswell Park Cancer Institute in Buffalo, New York, USA. His salary support comes primarily from Roswell Park Cancer Institute and from research funding provided by the National Cancer Institute, the Robert Wood Johnson Foundation, the American Legacy Foundation, and New York State Department of Health. Dr Cummings serves on the medical advisory board for the Flight Attendant Medical Research Institute (FAMRI) and has served on various scientific advisory boards and grant review committees for National Institutes of Health, Centers for Disease Control and Prevention, American Cancer Society, Canadian National Cancer Institute, Robert Wood Johnson Foundation, and state and local health agencies for which he has received honoraria. Dr Cummings has also received honoraria and has accepted hospitality and on a few occasions, travel costs, from pharmaceutical companies making tobacco dependence treatment products.

©The New Yorker Collection. Mark Stevens from Cartoonbank.com. All Rights Reserved.
Eclipse: does it live up to its health claims?

J E Swauger

Tob Control 2003 12: 104-105
doi: 10.1136/tc.12.1.104-a

Updated information and services can be found at: http://tobaccocontrol.bmj.com/content/12/1/104.2

References

This article cites 6 articles, 1 of which you can access for free at: http://tobaccocontrol.bmj.com/content/12/1/104.2#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/