Letters intended for publication should be a maximum of 500 words, 10 references, and one table or figure, and should be sent to the editor at the address given on the inside front cover. Those responding to articles or correspondence published in the journal should be received within six weeks of publication.

Listening between the lines: what BAT really thinks of its consumers in the developing world

In an audio recording of the “Structured Creativity Conference” held in Hampshire, UK in June 1984, British American Tobacco (BAT) adds context to the written report of market-and product applications.1 Employees are taped brainstorming creative ways to push their product in light of future marketing constraints and social pressure towards a smoke-free society. Project proposals included the “front end lift” cigarette design to give the smoker more “impact” on the first page of internal tobacco industry documents is the significant difference between what is written and what is said. David Schechter, the former BAT lawyer, recently explained the “mental copy rule” to the US Department of Justice, which assumed that anything one would write could end up being used publicly or legally against the company.2 This leads to the obvious question: Are we overlooking important research tools in the form of non-written material?

M E Muggli
R D Hurt

Correspondence to: Monique E Muggli, 1345 Osceola Avenue, St Paul, MN 55103, USA
mmuggli@bat.com

References

Eclipse: does it live up to its health claims?

We read the recent article by Slade et al1 with great interest and agree that reasonable regulation focused on the development and appropriate evaluation of potential reduced risk cigarettes is warranted. Furthermore, we agree with Slade et al that the results of our evaluation indicate that Eclipse may offer potential benefits to smokers. However, we disagree with several of the other conclusions drawn by the authors.

The article challenges the merits of Eclipse and questions the fundamental differences between Eclipse and other cigarettes. It is not possible within the context of this letter either to fully describe the scientific data that has been developed to characterise Eclipse or to address many of the criticisms raised in Slade’s article. However, we briefly address pertinent issues below and encourage interested parties to independently evaluate all of the available information.

Slade et al have inaccurately represented the claims that RJ Reynolds Tobacco Company (RJRT) has made regarding Eclipse. No cigarette is without risk, including Eclipse. Our advertising for Eclipse states, “The best choice for smokers who worry about their health is to quit. But Eclipse is the next best choice for those who have decided to continue smoking.” Our advertising also makes it clear that RJRT does not claim that Eclipse presents less risk of cardiovascular disease or complications with pregnancy.

In the absence of any existing regulatory standard, RJRT assessed Eclipse’s risk reduction potential using a four step scientific methodology that included chemical testing and analysis, biological and toxicological testing, human testing, and independent scientific verification. In general, the evaluation strategy utilised was consistent with strategies outlined by the Institute of Medicine Committee that addressed this subject.2 RJRT conducted an extensive comparative evaluation of Eclipse and has presented this research at scientific meetings in the both the USA and internationally. The results of these and other studies may be reviewed on the Eclipse website (www.eclipsescience.com).

In addition, much of this research has been published in the peer reviewed literature. The weight of the evidence from this research clearly shows that, compared to other cigarettes, Eclipse may present smokers with less risk of cancer, chronic bronchitis, and possibly emphysema. An independent panel of scientific experts reviewed the science and reached conclusions consistent with RJRT’s claims.3

RJRT’s comparative studies were conducted using Kentucky reference cigarettes (K1R5F and K1R4F) and leading low “tar” and ultra low “tar” commercial brand styles. Combined, the cigarettes selected for comparison to Eclipse are representative of the vast majority of cigarettes sold in the US market.4 By contrast the entire market segment of the very low yielding ultra low “tar” cigarettes used by Slade et al as a comparison collectively represent less than 1% of the market. Furthermore, one of the two cigarettes selected as a comparison (Now Box) does not have a measurable US Federal Trade Commission (FTC) “tar” yield.

"urban", “male”, between 18–30, and “aspirers . . . they’re not going to go for it.”

1 The brand image must be enhanced by the new packaging. . . if you just say, this is a cheap cigarette for you dirt poor little black farmers . . . they’re not going to go for it.”

R JRT has conducted an extensive comparative evaluation of Eclipse and has presented this research at scientific meetings in the both the USA and internationally. The results of these and other studies may be reviewed on the Eclipse website (www.eclipsescience.com).

In addition, much of this research has been published in the peer reviewed literature. The weight of the evidence from this research clearly shows that, compared to other cigarettes, Eclipse may present smokers with less risk of cancer, chronic bronchitis, and possibly emphysema. An independent panel of scientific experts reviewed the science and reached conclusions consistent with RJRT’s claims.3

RJRT’s comparative studies were conducted using Kentucky reference cigarettes (K1R5F and K1R4F) and leading low “tar” and ultra low “tar” commercial brand styles. Combined, the cigarettes selected for comparison to Eclipse are representative of the vast majority of cigarettes sold in the US market.4 By contrast the entire market segment of the very low yielding ultra low “tar” cigarettes used by Slade et al as a comparison collectively represent less than 1% of the market. Furthermore, one of the two cigarettes selected as a comparison (Now Box) does not have a measurable US Federal Trade Commission (FTC) “tar” yield.

www.tobaccocontrol.com
Comparisons of Eclipse mainstream smoke constituent yields to the yields of very low yielding ultra low "tar" cigarettes (Now Box and Carlton Soft Pack) obtained by machine smoking do not change the fact that Eclipse cigarettes may present smokers with less risk of certain smoking related diseases than other cigarettes. RJRT scientists have recently demonstrated Eclipse is significantly mutagenic on a per mg "tar" basis than either Carlton Soft Pack or Now Box over a wide range of machine smoking conditions. On a per cigarette basis, Eclipse was less mutagenic than Carlton Soft Pack under all machine smoking conditions tested and was less mutagenic than Now Box when evaluated using the machine smoking conditions mandated by both the Massachusetts Department of Health and the Canadian federal government. In addition, Eclipse was significantly less cytotoxic on both a per mg "tar" basis and a per cigarette basis under the same range of machine smoking conditions.

As noted by Slade et al., smokers typically take larger and more frequent puffs than those specified by the US Federal Trade Commission puffing regimen and they typically smoke Eclipse differently than their usual brand. Therefore, it is essential that we obtain a weight-of-the-evidence approach, including studies in smokers, be used to characterise potential differences between Eclipse and other cigarettes. Urine mutagenicity studies conducted in smokers demonstrate that smokers of ultra low "tar", full flavour low "tar", and full flavour "tar" cigarettes all experience substantial, statistically significant reductions (p < 0.05) of their endogenous DNA damage compared to control, demonstrating the effectiveness of Eclipse cigarettes in reducing the risk of cancer and other smoking related diseases. The mutagenic reduction has been described by Frampton in his definitive monograph, Clearing the Smoke (1983).

References

1 Slade J, Connolly GN, Lymeris D. Eclipse: does it live up to its health claims? Tobacco Control 2002; 11 (suppl II): i64–70.
10 Frampton MW, Hyde RW, Tonnes A et al. Lung injury and inflammation in smokers: effects of switching to a "new" cigarette. World Congress on Lung Health and 10th ERS Annual Congress, Florence, 30 August to 3 September 2000, Florence, Italy.
11 Rennard SI, Umuti T, Millimal P et al. University of Nebraska Medical Center. Switching to ECLIPSE is associated with reduced inflammation in the lower respiratory tract of heavy smokers. Presented at the spring 1999 Meeting of the Society for Research on Nicotine and Tobacco.

Author's reply

Swauger argues that based on the weight of the evidence, Eclipse, compared to other cigarettes, may present smokers with less risk of cancer and other smoking related diseases. He also bases this conclusion on "weighing" the scientific research RJ Reynolds Tobacco (RJRT) has conducted on Eclipse. Our study drew the opposite conclusion. Our analysis of the Eclipse research suggests that Eclipse cigarettes yield fewer mutagenic or toxic or more toxic than a number of conventional cigarette brands.

RJRT claims "there is no cigarette like Eclipse" based on a comparison of the smoke chemistry of Eclipse with a typical ultralight. Merit. We tested Eclipse against two other ultralight cigarettes, Now and Carlton, and found the smoke concentrations of four major carcinogens to be higher, lower, or equal. This conclusion is relevant to efforts aimed at tobacco control. Unfortunately, little attention has been paid to the seasonal nature of smoking. Findings on seasonal patterns may have major implications for the timing of interventions designed to manage the tobacco problem, both in the USA and in other countries.4

In this letter, monthly data for cigarette sales at the state level for the USA are analysed to test for the presence of seasonality and to characterise the phenomenon. The results reveal a seasonal pattern that is significant both in the statistical sense and in magnitude. This includes a drop in the winter months of January and February, and an increase during the summer months of June, July, and August.4 Because seasonality in sales does not reflect seasonality in production, it must be inferred that the seasonality is driven by wholesale and retail phenomena, including consumption.

The data used in this study are monthly figures for sales of cigareettes by wholesalers to retailers aggregated at the state level between January 1983 and July 2000. Until December 1997, the Tobacco Institute was responsible for their collection. For the period following this, the firm Orzechowski and Walker produced the data.4
The first was spectral analysis, which identifies cyclical patterns in the data. If a cycle of a particular length is revealed to be important, then a systematic phenomenon underlies the pattern.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.

In percentage terms, the seasonal effect is large—as column 4 shows, the mean annual range (difference between high and low factors) across the 17 years is about 30%. To put this in perspective, assuming a price elasticity of −0.4, a 30% drop in sales would require a 75% increase in cigarette prices!

Next, to identify the months for which sales were uniformly high or low for any state, for any one year cycle in the data, the two months with the highest and the two with the lowest seasonal components were selected, and the frequency of the appearance of the months in the “high-2” and “low-2” months was computed by state. Columns 5–8 show the most frequently appearing high and low months. January and February are a “low” season for 42 states. Figure 1 shows that February appears as a “low-2” month for all states.
sales, and June, July, and August, a “high” season.
Possible causes of seasonality include the effect of climate on smoking behaviour (low in cold weather and high in mild weather, especially in view of now widespread indoor smoking restrictions across the USA), the timing of tax changes (December-January or June-July), the timing of the new fiscal year (June-July), the timing of school year (August-June), and the timing of quitting efforts tied to New Year’s resolutions (December-January). In the obvious extension to this research, the determinants of this potentially important statistical phenomenon will be analysed in detail.

The present findings demonstrate that sales of cigarettes in the USA have a strong seasonal component. This has potential implications for the timing of cessation initiatives and other time dependent policies. The phenomenon of seasonality could hold the key to significant advances in tobacco control and in the management of a leading public health problem.

S Chandra
Graduate School of Public and International Affairs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

F J Chaloupka
Department of Economics, University of Illinois at Chicago, Chicago, Illinois, USA

Correspondence to: Siddharth Chandra, GSPIA, 3R25 Wesley W Posvar Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; schandra@pitt.edu

Acknowledgments
The authors gratefully acknowledge the support of the Substance Abuse Policy Research Program of the Robert Wood Johnson Foundation for supporting this work. Comments from Jonathan Caulkins and Robert Wood Johnson Foundation for supporting the Substance Abuse Policy Research Program of the Institute for Policy Research at Northwestern University are also gratefully acknowledged.

Way-out developments at BATCO
Working in tobacco control, it is easy to get the impression that the tobacco industry is a united front, with all parties carefully avoiding internal divisions that might undermine the greater struggle against the “antis”. However, tobacco industry documents that have been made public as a result of litigation in the USA frequently reveal ruthless competition for market share, as well as intense suspicion about competitors’ activities. This was brought home to us recently when reading a 1977 document on “developments in the scientific field” by Dr Sydney J Green, then British American Tobacco’s (BAT’s) senior scientist for research and development.1
After several pages of unremarkable reports on industry and external research on low tar cigarettes and smoking and health, Green informed his readers about two “way-out” developments at BAT:
• Way-out development 1: “A way-out development is that of compounds (such as etorphine) which are 10,000 times as effective as analgesics (such as morphine and which are very addictive. It is theoretically possible (if politically unthinkable) to add analytically undetectable quantities of such materials to cigarettes to create brand allegiance. But this thought may suggest the possibility of such compounds occurring naturally.”

We are grateful to Dr Green for clarifying what “brand allegiance” really means for the tobacco industry.
• Way-out development 2: “Another way-out development, which arises from work done in a quite different area, is that it would now be quite feasible and quite inexpensive to produce an unacceptable off-taste in cigarettes from some factories for a prolonged period without approaching nearer than half to one mile.”

In the same spirit of scientific curiosity which no doubt motivated the BATCO researchers, we would be very interested to know the formula for this substance. On a more serious note, while we were not able to come up with any plausible candidates for a substance that could make way-out development 2 feasible, we are concerned that Green was right about the feasibility of adding etorphine or some other addictive substance to cigarettes.

Green’s report followed an earlier memo from Keith D Kilburn to CI Ayres,2 expressing

References
3 Orzechowski W, Walker RC. Monthly state-level data on tax-paid cigarette sales. Electronic file provided to Frank Chaloupka. (See also, for example, Orzechowski W, and Walker RC. The tax burden on tobacco: historical compilation, 1999: Arlington, Virginia: Orzechowski and Walker.)

Figure 1 Months with high and low seasonal factors (with possible reasons for prominent months).
concern about what BATCO's competitors might be doing to their "low delivery cigarettes" (that is, low machine measured tar and nicotine yield cigarettes) in order to create brand allegiance. Kilburn proposed that a regular etorphine dose of as little as 0.2 µg per day would be sufficient to create an addictive craving for the source. He also claimed that the required delivery of around 7 ng per cigarette (or around half the delivery of benz[a]pyrene) would be analytically difficult to measure.

Etorphine is a powerful drug with heroin-like effects, which include respiratory failure in the case of overdose. It may be more familiar to the public as "elephant juice"—a veterinary drug with such high potency that a tiny quantity injected from a dart can immobilise an elephant.

The dangers of etorphine to humans have been dramatically demonstrated in accidents during veterinary use, as there have been fatal overdoses to veterinarians attempting to dart large unruary animals. Reputedly, a mere scratch from an etorphine dart has been sufficient in some cases to provide a fatal overdose. As a consequence of these fatalities, veterinarians who are registered to use etorphine must now have an assistant standing by with a dose of an etorphine antagonist in hand.

These observations on the dangers of etorphine underscore Green's and Kilburn's essential point: very low concentrations of certain psychoactive substances may be sufficient to produce important effects, including addiction. Fortunately, etorphine has become much more readily detectable in recent years than Green and Kilburn suggested was the case. Hence forensic toxicologists have put considerable effort into developing highly sensitive detection methods. However, in a world market with minimal regulation of cigarette additives and limited testing capacity outside the industry's own laboratories, we should remain concerned about what the tobacco industry might be willing to do in order to create "brand allegiance".

S M McGhee, A J Hedley, T H Lam
Department of Community Medicine, University of Hong Kong, Hong Kong

References

Interest in nicotine replacement therapy among pregnant smokers

In the UK nicotine replacement therapy (NRT) may now be considered for those pregnant women who cannot otherwise stop smoking.1 However, very little research has been carried out with NRT during pregnancy and the level of interest in using NRT is not known.2 This letter reports the results of a survey to assess the level of interest in using NRT among pregnant smokers.

Across a seven month period pregnant smokers were identified using the patient administration system of a large district general hospital in south west London. Ethical approval was obtained and participants gave verbal consent via the telephone. Smokers identified as smokers at their first antenatal booking visit were telephoned within one week of this visit and invited to take part in the survey. The interview took place during the initial telephone call or during a further call within 48 hours of the initial call. All statistical tests were two tailed.

Demographic information was obtained from patient records. All the women were asked "Can I just check, are you still smoking at the moment?" ("yes" or "no"). Those still smoking were asked "About how many a day would you say you are smoking at the moment?", and "Are you thinking about stopping?" ("yes" or "no"). Of the 207 smokers who were interviewed (fig 1) the large majority were not in professional/managerial occupations (85.0%, 176/207), were white (75.8%, 157/207), and attended their first antenatal booking visit in the hospital (66.7%, 138/207) rather than in the community. The mean (SD) duration of pregnancy was 18.6 (5.6) weeks and the mean (SD) reported number of cigarettes smoked per day was 7.3 (6.1).

Of those women reporting that they were thinking about stopping smoking 44.7% (67/150) expressed an interest in using NRT. Interest in NRT was higher among women who reported smoking more cigarettes per day (analysis of variance (ANOVA); F = 7.6,
Figure 1 Participant flow. PAS, patient administration system.

References

Voodoo cigarillos: bids in disguise?

As part of its routine monitoring of emerging tobacco products, “Trinkets & trash: artifacts of the tobacco epidemic”, a collection of current and historic tobacco marketing (www.trinketsandtrash.org), recently identified a new tobacco product called Voodoo cigarillos. They are exclusively manufactured in India for the US based Kretek International, a specialty tobacco distributor whose exclusive product line includes Djurrum clove cigarettes, Darshan bidis, and Dreams multi-coloured and flavoured cocktail cigarettes.1

The Voodoo cigarillos we obtained were flavoured and, as with bidis, consisted of tobacco flakes wrapped in a leaf tied with a small string. Aside from a slightly larger and more uniform cylindrical shape, Voodoo cigarillos appear to be nearly identical to bidis (fig 1). Only the name on the package would identify it as a cigarillo. US federal regulations define a cigar as any roll of tobacco wrapped in leaf tobacco or in any substance containing tobacco.2 Voodoo cigarillos appear to be wrapped in tendu leaf, which do not naturally contain tobacco.

So we ask, is this new product a cigarillo or a bidi with new packaging? Federal regulations define a cigar as any roll of tobacco wrapped in paper or in any substance not containing tobacco.1 The US Bureau of Alcohol, Tobacco and Firearms previously concluded the bidi wrapper did not contain tobacco and, therefore, bids were subject to the federal cigarette tax.3

The distinction between a cigarillo and a cigarette has important legal and financial implications. Since the wrapper of a cigarillo contains tobacco, cigarillos are taxed at the same rate as small cigars. In 2002, the US federal tax rate for small cigars was 4 cents per pack of 20, while the rate for cigarettes was 39 cents per pack of 20.4 While all 50 states impose a tax on cigarettes, only 45 states impose a tax on cigars,5 which are lower than their cigarette tax.6 If Voodoo cigarillos are taxed at the rate of cigars, the lower federal and state taxes mean a higher profit margin for the merchant and/or lower prices for consumers.

In addition to tax differences, labelling the Voodoo product as a cigarillo has important consequences for their regulation. Several states have expanded their definition of tobacco products to include bids, making sales to minors illegal. Illinois, Vermont, and West Virginia banned the sale of bids completely.7 More recently, California passed a bill prohibiting the sale, distribution or importation of bids except by businesses that prohibit minors, such as bars and casinos.8 Also, federal legislation to halt the importation of bids into the USA was introduced in 2001.9 By being sold as a cigarillo, US federal cigarillos would get around the ban on bidi sales in some states.

This new product emerges at a time when bidi sales are vulnerable to increased regulation at the state, and possibly the federal level, as well as higher cigarette excise taxes in 19 states in 2002.10 The Voodoo cigarillo may be a clever way for the tobacco industry to circumvent the regulations and restrictions imposed on bids. Voodoo cigarillos should be reliably tested to determine if manufacturers and vendors are in compliance with federal and state laws.

C Delnevo, M Hrywna, M J Lewis, S Yulis
University of Medicine and Dentistry of New Jersey School of Public Health, New Brunswick, New Jersey, USA

Correspondence to: Cristine Delnevo, 335 George Street, Liberty Plaza Suite 2200, New Brunswick, NJ 08903-2688, USA; delnevo@umdnj.edu

References

The US Bureau of Alcohol, Tobacco and Firearms previously concluded the bidi wrapper did not contain tobacco and, therefore, bids were subject to the federal cigarette tax.
Smoking in children’s picture books

The other day, one of the authors went to a public library with his 3 year old daughter to read some picture books to her. Various picture books, from classic to newly published, were available. Classic books are her favourite. First, she chose a book portraying adventures of a naughty monkey named Curious George (by HA Rey). He came to an industrialised country with a man in a yellow hat. My daughter pointed to a picture of the man holding a pipe between his lips. A smoking scene in a picture book for small children!

The next book she chose depicted an elephant named Babar (by Jean de Brunhoff) that fled from his country to Europe after his mother was killed by men. After coming back to his country with western technologies, he changed elephant society into Western-style society and became a king. Again, the King Babar was holding a pipe.

The third book was depicting a monster named Barbapapa living with François’ family (by Tison and Taylor). He had a mysterious ability to metamorphose into anything he desired. Unfortunately, in this attractive book, François’ father was always holding a pipe. Another supporting character was smoking a cigar. Smoking seems to be a symbol of manhood in these children’s picture books.

My daughter then opened books about Moominvalley (by Tove Jansson) and Tintin’s adventures (by Herge) in which some characters were smoking. Finally, I myself selected a book depicting Father Christmas (by Raymond Briggs). On Christmas Eve, Father Christmas delivers presents to children all over the world. After the labourious job, he took a rest smoking a cigar and a pipe.

Picture books reflect the norms or perceptions of our societies. These classic children’s books were first published in times when smoking was not widely acknowledged as harmful and a smoking male adult was one of the sex stereotypes. In addition, pipe smoking seems acceptable in such picture books compared with cigars or cigarettes which are seldom seen.

Caregivers frequently read picture books aloud to children at home, kindergartens, or daycare centers, which may have a considerable influence on preschool children. Young children receive strong messages from pictures. Seeing adult males smoking in picture books, they may take it as a desirable behaviour.

It would be unacceptable to remove smoking scenes from these classic books or eliminate the books themselves. What we can do is to become aware of the potential influence of these books and take a negative attitude to smoking when we read to children.

Fortunately, the man in a yellow hat seems to have quit smoking in the new series of George’s adventures.

S Nakahara, S Wakai, M Ichikawa
Department of International Community Health, Graduate School of Medicine, The University of Tokyo, Japan

*Correspondence to: S Nakahara, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; shinji@m.u-tokyo.ac.jp

Getting them while they’re young in China. Submitted by Professor TH Lam, Hong Kong.
Smoke-filled rooms: a postmortem on the tobacco deal

Smoke and mirrors

Cigarettes are a major cause of premature death. Cigarettes are addictive. Secondhand smoke can be annoying, but is really not enough of a health risk to justify banning smoking in indoor environments. Payments to states in the Master Settlement Agreement were unjustified since cigarettes are self-financing. States actually save money because smokers die young. Lawsuits against the tobacco industry are without merit, since smokers have long known about the health risks. Continuing efforts to warn the public about the health risks of smoking are unwarranted since public awareness of these risks are now universal. Filters and low tar technology have made cigarette smoking safer, but many are accustomed to these measures to curb how tobacco companies spent annually by cigarette companies to advertise and promote cigarettes. Viscusi also ignores the mountains of internal industry documents that openly discussed the importance of the youth market to the economic viability of the cigarette industry. Instead he accepts at face value the industry's line that they don't want kids to smoke. Viscusi's remedy for the youth smoking problem is to get parents to keep their kids from smoking and to enact policies to prohibit the sale of unconventional cigarettes like bidis. The discussion of bids is especially odd since he has smoked these products; instead teenagers smoke Marlboro, Newport, and Camel. Thus, while one can hardly argue with Viscusi's plea for better measures to curb how tobacco companies market their cigarettes to attract the attention of youthful smokers makes the sincerity of his recommendations suspect.

Viscusi's chapter on the health risks associated with secondhand tobacco smoke is grossly uninformed. Much of this chapter reads like it was drawn from industry sponsored websites that have been designed to spread misinformation, downplaying the health benefits gained from lowering the machine measured tar yield of cigarettes. He conveniently ignores the data showing that smoking filtered and low tar cigarettes have actually reduced public health benefit gained from lowering the tar yield of cigarettes has proven elusive. Moreover, on a population wide basis, a strong argument can be made that the marketing of lower tar cigarette brands had an adverse impact on the public's health by convincing a segment of smokers who might have otherwise stopped smoking to maintain their smoking behaviour under the illusion that their disease risk would be reduced by switching to a filtered low tar cigarette.

In summary, Smoked-filled rooms reads more like a legal brief written by a team of tobacco industry lawyers instead of a thoughtful commentary on the legal, financial, and social consequences of smoking. As such this book is a must read for plaintiffs' attorneys, but for the rest of us we should stick with "smoke-free rooms".

K M Cummings

References

4 Hurt RD, Robertson CR. Prying open the door to the cigarette industry’s secrets about nicotine – the Minnesota tobacco trial. JAMA 1998;280:1173–81.

Disclosure
K Michael Cummings is not an unbiased observer of Dr Viscusi’s research and writings. He has served as a paid expert witness on behalf of plaintiffs counsel in several of the same cases in which Dr Viscusi also served as an expert for the cigarette industry. Dr Cummings is currently employed as a senior research scientist and is chairman of the Department of Health Behavior in the Division of Cancer Prevention and Population Sciences at the Roswell Park Cancer Institute in Buffalo, New York, USA. His salary support comes primarily from Roswell Park Cancer Institute and from research funding provided by the National Cancer Institute, the Robert Wood Johnson Foundation, the American Legacy Foundation, and New York State Department of Health. Dr Cummings serves on the medical advisory board for the Flight Attendant Medical Research Institute (FAMRI) and has served on various scientific advisory boards and grant review committees for National Institutes of Health, Centers for Disease Control and Prevention, American Cancer Society, Canadian National Cancer Institute, Robert Wood Johnson Foundation, and state and local health agencies for which he has received honoraria. Dr Cummings has also received honoraria and has accepted hospitality and on a few occasions, travel costs, from pharmaceutical companies making tobacco dependence treatment products.

The lighter side ..

©The New Yorker Collection. Mark Stevens from Cartoonbank.com. All Rights Reserved.
Voodoo cigarillos: bidis in disguise?

C Delnevo, M Hrywna, M J Lewis and S Yulis

Tob Control 2003 12: 109-110
doi: 10.1136/tc.12.1.109

Updated information and services can be found at:
http://tobaccocontrol.bmj.com/content/12/1/109

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://tobaccocontrol.bmj.com/content/12/1/109#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/