A guide to deciphering the internal codes used by the tobacco industry

Many tobacco control researchers and advocates are now aware of the value of the internal tobacco industry documents made public as a result of the state attorney generals’ Master Settlement Agreement. A growing body of document based research provides dramatic insight into industry initiatives and strategies. These published studies also provide countless examples of the secret language commonly used by the tobacco industry internally. As observed in Philip Morris’ Dictionary of tobacco terminology, “Every specialized field has its own language.” The language of the internal documents is frequently comprised of project names, acronyms, abbreviations, numerical identifiers, and other coded terms, presented without any clear indication of their definitions or meanings. These coded terms can make the task of document research very daunting: like trying to learn a foreign language without an instructor or reference dictionary.

Familiarity with the codes used internally by manufacturers is critical to successfully conducting document research and interpreting internal industry activities. Although individual efforts have described the codes relevant to particular topics of research, no single research group has sought to identify the full extent and types of code languages used by the industry or the patterns governing internal codes. Many tobacco companies do maintain internal lists of terms. For example, over a dozen Philip Morris documents are devoted solely to providing their personnel with guides to the company’s extensive acronyms, abbreviations, codes, and terminology. Ultimately, however, the majority of terms and project names are not covered in internal lists, and understanding the meaning of internal codes necessitates both careful research as well as recognition of the common patterns and conventions employed throughout this terminology.

A recent monograph, A guide to deciphering the internal codes used by the tobacco industry, available on the Harvard School of Public Health website (http://www.hsph.harvard.edu/php/pr/tcrtp/home.html), identifies and describes a number of industry code lists and highlights different types of industry codes, both formal and informal, ranging from acronyms to “catchy” names, from numerical coding and letter patterning to signs of the zodiac and the names of world rivers. This monograph is part of a larger research project funded through a grant from the National Cancer Institute to list and define codes and project names used internally by the industry in areas related to product research, including product development, testing, and design. The ongoing list is housed online at http://tobaccodocuments.org/profiles/. We encourage other document researchers to expand this list by posting codes and definitions that they have encountered. The public health community has benefited in extraordinary ways through the availability of the documents to all; now we need to work together to identify and expose the secrets hidden within these documents.

D Cullen, G F Wayne, G Connolly, H Koh
Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA

Correspondence to: Doris Cullen; dcullen@hsph.harvard.edu
doi: 10.1136/tc.2004.010967

This research was funded through R01 grant CA87477-05 from the National Cancer Institute.

REFERENCE

Adult’s perceptions about whether tobacco companies tell the truth in relation to issues about smoking

The tobacco industry has long denied or played down the risks of smoking, addiction, and passive smoking in Australia. A survey commissioned by Philip Morris in 1993 indicated that most Australian opinion leaders and the general public have an unfavourable opinion of the company, even less favourable than that of Americans. Faced by a rising tide of litigation, the tobacco industry has attempted to change their image over the past decade to one of a “socially responsible” corporate citizen.

Unlike in the USA, where the tobacco industry have engaged in extensive corporate image advertising and campaigns directed at youth and parents, in Australia, tobacco companies have focused on more subtle approaches. For example, Philip Morris attempted to administer a series of workshops for Australian schoolteachers on how to encourage children to “say no to illicit drugs, underage smoking, drinking alcohol and bullying.” British American Tobacco (Australia) uses their website to boast of “substantial donations” to charities such as Lifeline and Mission Australia, while in 1999, Philip Morris listed itself in a corporate promotional brochure as sponsoring the Red Nose Day Foundation (supporting research on sudden infant death syndrome). During this period of “corporate re-imagining”, the tobacco industry also appeared prominently in the Australian news media. The Rolah McCabe trial in 2002 generated a great deal of press coverage and debate about the liability of the tobacco industry for smoking related illnesses and about their conduct in light of the Victorian Supreme Court finding that British American Tobacco had subverted the discovery process by deliberately destroying thousands of documents. To gain insight into how adults in the Australian state of Victoria perceive the tobacco industry, data from representative population surveys were analysed.

Telephone interviews with Victorian adults were conducted during November and December 2002 (n = 1995), 2003 (n = 3001), and 2004 (n = 2997). Participants were asked: “In relation to issues about smoking, do you think tobacco companies…always tell the truth; mostly tell the truth; mostly do not tell the truth, or never tell the truth?”

Table 1 shows that, in 2004, less than 1% of Victorian adults reported they thought that tobacco companies always tell the truth. The majority of adults (79%) reported they thought tobacco companies either never or mostly do not tell the truth in relation to issues about smoking. Smokers (23%) were significantly more likely than former smokers (11%) and never smokers (16%) to believe that tobacco companies always or mostly tell the truth (p < 0.01). However, smokers were quite polarised in their views, with 32% of smokers also reporting that tobacco companies never tell the truth.

The percentage of adults who think tobacco companies mostly do not or never tell the truth has increased in a linear fashion from 2002 (75%) to 2003 (77%) to 2004 (79%) (p < 0.001). This level of distrust is comparable to South Australian adults’ perceptions in 1998, when 80% of respondents and 74% of smokers thought tobacco companies mostly did not or never told the truth about smoking and health, children and smoking, and addictiveness of tobacco. Although distrust was high in 2002, findings indicate that the Australian public is becoming increasingly wary of the tobacco industry and remain unmoved by industry attempts to paint themselves as model corporate citizens.

Table 1 Perceptions of truth telling by tobacco companies in 2004

<table>
<thead>
<tr>
<th>Total (n = 2997)</th>
<th>Smokers* (n = 638)</th>
<th>Former smokers† (n = 833)</th>
<th>Never smokers (n = 1524)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never tell the truth</td>
<td>26.7</td>
<td>32.0</td>
<td>28.7</td>
</tr>
<tr>
<td>Mostly do not tell the truth</td>
<td>52.3</td>
<td>39.3</td>
<td>56.5</td>
</tr>
<tr>
<td>Mostly tell the truth</td>
<td>15.5</td>
<td>21.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Always tell the truth</td>
<td>0.8</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Don’t know/can’t say/refused</td>
<td>4.6</td>
<td>5.5</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Data weighted by age and sex according to Australian Bureau of Statistics population Census data for 2001.

*Smokers include those who smoke daily, weekly or less than weekly.
†Former smokers include those who had smoked at least 100 cigarettes or an equivalent amount of tobacco in their lifetime.
In Australia, the Tobacco Advertising Prohibition Act (1992) bans most forms of tobacco advertising and promotion. In response to restrictions, the tobacco industry has resorted to "below the line" activities such as promotion events at music festivals, fashion parades, and sporting events. These activities include giveaways, promotions at venues, and direct access to a primary target market for tobacco products.

Selling or promotion?

The tobacco industry promotes tobacco products at these events. At the single indoor event, cigarettes were sold via a "sales activation machine" that included musical performances and free samples. At the outdoor events, cigarettes were sold in tents set up as "chill-out" areas in which chairs were provided for people to relax. The tents were staffed by women who sold tobacco products, ancillary products, and merchandise (for example, beer holders bearing the Rizla cigarette paper logo). At two events "cigarette girls", dressed in Peter Stuyvesant brand colours, walked around the venues with trays of cigarettes for sale.

Approximately half of the events were not restricted to those aged 18 years and over, thus exposing patrons aged under 18 years to the promotional activities of the tobacco companies.

Not only do youth music events provide direct access to a primary target market for tobacco companies, but they also allow the marketers to build brand images by associating their brands with youth popular culture. Smoking becomes associated with the enjoyable experience of the music and fun atmosphere of the events, thus reinforcing the behaviour of current smokers and building more positive attitudes towards smoking among experimenters and non-smokers.

The state government of Western Australia recently introduced legislation which, if enacted, will assist in controlling the promotion of tobacco products at events. Specifically, the proposed Tobacco Products Control Bill 2005 proposes to ban the mobile selling of tobacco products (currently not considered to be promotion, and permitted as "selling"). It also contains provisions to prohibit the sale or supply of tobacco products via temporary premises at events. The legislation is expected to attract significant numbers of people aged under 18 years. This proposed new legislation will further restrict the marketing opportunities of tobacco companies.

REFERENCE

3. Trotter L, Chapman S. Conclusions about exposure to ETS and health that will be unhelpful to us: how the tobacco industry attempted to delay and discredit the 1997 Australian National Health and Medical Research Council report on passive smoking. Tobacco Control 2003;12(suppl iii):i102–6.

Western populations seems to be correct. I note that the existence of high misclassification rates in Asian women has in fact been independently confirmed.2

Yano states1 that I used his data without his consent. As far as I am aware, the data never belonged to Yano. The study had been funded by the industry which had carried out the cotinine analyses (blind of self reported smoking status). I had originally proposed that the study be done, following conduct of a similar study in England, which the industry supported at my request, the results of which I reported.1 The original intention had been for Yano to be a major author, but problems arose because his interpretation of the findings differed materially from mine, due to his misunderstanding of the complexities of misclassification. Discussions took place between Yano and Proctor, who played an important role in the planning and organisation of the study on behalf of the tobacco companies who funded it; I was told that these discussions led to Yano deciding not to be a major author, and to his misunderstanding that the work would be published by others.

I had assumed that Proctor would keep Yano informed about the status of the publication and was surprised Yano did not find out about the paper, published in 1995, until some seven or eight years later. Clearly, one of us should have kept him informed, and for this I apologise. In his original article,1 Yano states that “at no stage in my interactions with Proctor was Lee’s name or the paper seen” and “the paper had no agreement I am aware of that Yano had sole rights to authorship.” Had I not published was no agreement I am aware of that Yano had sole rights to authorship. However, Yano’s version acceptable to all, with Yano in the author list, been published. However, Yano’s version acceptable to all, with Yano in the author list, was a joint enterprise, as I saw it, and it is perfectly normal for some of the scientists involved in a study to write a draft for others to perfect. Chapman sees the publication as ghost authorship at all, when I proposed the study, helped in its design and publication and was surprised Yano did not inform about the paper, published in 1995, until some seven or eight years later. Clearly, one of us should have kept him informed, and for this I apologise. In his original article,1 Yano states that “at no stage in my interactions with Proctor was Lee’s name or role ever mentioned”. This is surprising inasmuch as the study proposal stated that I would assist in reviewing the study design and in interpreting the data. Was Yano really unaware of the previous literature on misclassification of smoking, in which I figured prominently (see Lee7) when conducting a study, a major aim of which concerned the determination of misclassification rates? Chapman7 considers that “it is hard to imagine a more flagrant example of attempted ghost authorship”. It is difficult to see why Chapman sees the publication as ghost authorship at all, when I proposed the study, helped in its design and published it. The study was a joint enterprise, as I saw it, and it is perfectly normal for some of the scientists involved in a study to write a draft for others to agree to. It would clearly have been better had a version sent to all, with Yano as the author list, been published. However, Yano’s failure to understand the mathematics of misclassification made this impossible. There was no agreement I am aware of that Yano had sole rights to authorship. Had I not published the paper I7 it seems that the findings would never have appeared in the public domain at all. Did Yano also have sole rights to suppress the findings?8 At the end of the day it is interesting that, though the evidence of high misclassification rates in Japanese women has been independently confirmed,2 the relevance of this to the ETS/lung cancer relationship has been ignored in recent major reviews of ETS and lung cancer (for example, Hackshaw at al4; International Agency for Research on Cancer10), I have demonstrated the major biasing effect of this finding in detail elsewhere.1

doi: 10.1136/tc.2005.014373

Competing interests: Peter Lee is a long term consultant to the tobacco industry.

REFERENCES

1 Yano E. Response to P N Lee [Commentary]. Tobacco Control 2005;14:234–5

2 Lee PN. Japanese spousal study: a response to Professor Yano’s claim [Commentary]. Tobacco Control 2005;14:235–6

3 Yano E. Japanese spousal smoking study revisited: how a tobacco industry funded paper reached erroneous conclusions. Tobacco Control 2005;14:227–35

4 Chapman S. Research from tobacco industry affiliated authors: need for particular vigilance [Editorial]. Tobacco Control 2005;14:217–9

Should a paper with erroneous interpretations based on invalid measurements be published?

In response to Mr Lee’s comment1 which follows previous responses1 and my paper, I offer further information to resolve an apparent misunderstanding of the validity and reliability of cotinine/creatinine ratio (CCR) measurement and his misunderstanding of the formula of misclassification. I also express concerns about the critical scientific integrity in his reporting1 of the Japanese spousal study, including his authorship.

As I demonstrated,1 all indices of nicotine exposure (ambient room, personal sampler monitors, and saliva) across Japan) were well correlated but poorly correlated with CCR, raising doubts about the validity of the CCR measurement. Yet Lee maintains that CCR measurement in this study was the gold standard for distinguishing true smokers from falsely reporting smokers. There are several possibilities about why the CCR measurement may have been invalid and unreliable in this study. In 1991 when I sent the urine samples to the RJ Reynolds laboratory (where the measurement was performed), I was informed that the quality assurance sample sent with the sample had sublimated before it reached the laboratory. This suggests that the sample was not maintained at low temperature before analysis. Cotinine measurements is temperature and humidity dependent and if the sample is exposed to high temperature may make the measurement inaccurate.2

As I calculated,4 the misclassification and reverse is dependent on the prevalence of smoking. With only a slight (3%) inaccuracy in CCR measurement, he can thereby easily get more than three times higher (21% v 6%) misclassification4 in a population with lower smoking prevalence, such as with Asian women.

After a long discussion between Proctor and me, Proctor finally understood and accepted my point on the misclassification formula. Our final draft of the misclassification formula, which Proctor sent to me on 9 November 1992 with my name as a sole author, clearly mentioned the high proportion of misclassification in both sides (self reported non-smoking subjects with high CCR and self reported smokers with low CCR).

Lee insists that reverse misclassification is relatively unimportant in his “abundant” mathematical publications. However, I note that it seems to have really only been calculated using 28/106 as the misclassification rate of self reported smokers in his original study,4 having quietly switched to 28/98 for this rate after I pointed out his confusion. Despite his claim that reverse misclassification is implausible, it was observed as a fact.

Lee states that as far as he is aware “the data never belonged to Yano”. He should be aware that I developed the questionnaire, and that the study was operated by the tobacco industry, supervised the survey at the study area (Shizuoka), erroneously referred to in Lee’s paper as “Shizoka”5. I planned and ordered the data input, performed the data analysis, and the use of Proctor to present the experience of possible sample damage (from dry ice sublimation) by the commercial
shipment at the first phase study in 1991, I even transported the second phase samples myself to the RJ Reynolds laboratory, in Winston Salem, North Carolina, where CCR was measured. I discussed the scientific content of the study with Proctor many times and he accepted my points and revised the draft many times, always with my name as the author, and never with Lee’s. As can be seen in the final draft, Proctor and I reached a certain agreement on the misclassification formula and the importance of the reverse misclassification rate.

Because Lee never participated in the actual survey it may be that he was unaware of details of the research such as the integrity of the sample which may have seriously affected the interpretation of results. Nor did he participate in the discussions which led Proctor and I to a deeper understanding of the analysis. Despite this, still Lee claims that he proposed the research project, he has a right to sole authorship regardless of who actually conducted the research. This is a unique idea that few scientists would accept.

Lee states: “Had I not published the paper it seems that the findings would never have appeared in the public domain at all. Did Yano also have sole rights to suppress the findings?” Again, I remind Lee that Proctor and I agreed that the results did not indicate high misclassification in self report non-smokers but some failure in the study. What both Proctor and I prepared for publication, although Proctor ceased to contact me before we could reach a final agreement, was totally different from what Lee eventually published. I consider that a description of a failed study involving the inaccurate measurement of CCR was undeserving of publication. Moreover, as a scientist committed to truth, I have a responsibility to be critical of a report with erroneous interpretations based on invalid measurements.

E Yano
Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan

Correspondence to: eyano@med.teikyo-u.ac.jp
doi: 10.1136/tc.2005.014688

REFERENCES

1 Lee PN. Response to E Yano and S Chapman [Letter]. Tobacco Control 2005;14:430-1
3 Lee PN. Japanese spousal study: a response to Professor Yano’s claims [Commentary]. Tobacco Control 2005;14:233-4
4 Yano E. Japanese spousal smoking study revisited: how a tobacco industry funded paper reached erroneous conclusions. Tobacco Control 2005;14:227-35

BOOK REVIEW

The millennium development goals and tobacco control: an opportunity for global partnership

Written by Katherine M Esson, Stephen R Leeder. Published by the World Health Organization, 2005. ISBN 92 4 159287 7

MDGs and tobacco: a glimmer of hope—but only if matched by dollars. Many agencies and governments have great expectations for the poverty reduction targets of the millennium development goals (MDGs). These were adopted at the Millennium Summit of the United Nations in New York in September 2000 with the aim to “ensure that globalization becomes a positive force for all the world’s people”. The eight goals of the MDGs are specifically targeting issues regarded as critical to progress in reducing poverty including eradicating poverty, achieving universal education, promoting gender equality, reducing child mortality, improving maternal health, combating HIV/AIDS, malaria and other diseases, and ensuring environmental sustainability. As conceived, the MDGs had a strong focus on poverty reduction, but the aim to improve health outcomes for marginalised millions was virtually silent on tobacco control.

The recent publication of The millennium development goals and tobacco control: an opportunity for global partnership is a welcome contribution to many of the initial gaps in the MDG goals impacted by global tobacco use. Since 2000, the World Health Organization and other UN agencies have done considerable work on the adverse role that tobacco use has not only on health but also on communities, economies, and the environment. Esson and Leeder give a very brief introduction to the impact of tobacco on health and then seek to establish links between tobacco and poverty in each of the eight MDGs. The book summarises some of the economic arguments that often rates highly with governments: “Tobacco has a negative impact on the balance of payments of many countries. Two-thirds of 161 countries, where data are available, are net importers of tobacco, losing more hard currency in cigarette imports than they gain in exporting tobacco.”

A summary of the key issues from this report was useful in included in the August 2005 publication by WHO and the World Health Organization (ECOSOC) passed a resolution indicating how pivotal this issue is by stating, “...tobacco control has to be recognized as a key component of efforts to reduce poverty, improve development and progress towards the Millennium Development Goals (MDG). Tobacco control needs to be included in the programmes of countries aiming to achieve the MDGs. Tobacco control also needs to be a key component of development assistance programmes in general.” Without this inclusion, it’s unlikely that the majority of developing countries will achieve their desired MDGs.

H Stanton
Secretariat of the Pacific Community, Noumea, New Caledonia
harleys@spc.int

Table 1

Hypothetical populations with 3% inaccurate CCR measurement

<table>
<thead>
<tr>
<th>CCR (ng/mg)</th>
<th>Smoker</th>
<th>Non-smoker</th>
<th>Total</th>
<th>Lee's misclassification formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: if 10% smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (<100)</td>
<td>97</td>
<td>27</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Low (<100)</td>
<td>3</td>
<td>873</td>
<td>876</td>
<td>= 27/124 = 0.21 (21%)</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>900</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>B: if 30% smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (<100)</td>
<td>291</td>
<td>21</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>Low (<100)</td>
<td>9</td>
<td>679</td>
<td>688</td>
<td>= 21/312 = 0.06 (6%)</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>700</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

CCR, cotinine/creatinine
A guide to deciphering the internal codes used by the tobacco industry

D Cullen, G F Wayne, G Connolly and H Koh

Tob Control 2005 14: 429
doi: 10.1136/tc.2004.010967

Updated information and services can be found at:
http://tobaccocontrol.bmj.com/content/14/6/429.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/