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ABSTRACT
Objective To evaluate the long-term net economic
impact of the California Tobacco Control Program.
Methods This study developed a series of dynamic
models of smoking-caused mortality, morbidity, health
status and healthcare expenditures. The models were
used to evaluate the impact of the tobacco control
programme. Outcomes of interest in the evaluation
include net healthcare expenditures saved, years of life
saved, years of treating smoking-related diseases
averted and the total economic value of net healthcare
savings and life saved by the programme. These
outcomes are evaluated to 2079. Due to data limitations,
the evaluations are conducted only for men.
Results The California Tobacco Control Program resulted
in over 700 000 person-years of life saved and over
150 000 person-years of treatment averted for the 14.7
million male California residents alive in 1990. The value
of net healthcare savings and years of life saved resulting
from the programme was $22 billion or $107 billion in
1990 dollars, depending on how a year of life is
discounted. If women were included, the impact would
likely be much greater.
Conclusions The benefits of California’s Tobacco
Control Program are substantial and will continue to
accrue for many years. Although the programme has
resulted in increased longevity and additional healthcare
resources for some, this impact is more than outweighed
by the value of the additional years of life. Modelling the
programme’s impact in a dynamic framework makes it
possible to evaluate the multiple impacts that the
programme has on life, health and medical expenditures.

INTRODUCTION
The California Tobacco Control Program (CTCP)
was established in 19891e3 using a portion of the
tax revenues generated as a result of the Tobacco
Tax and Health Protection Act, Proposition 99.
With an annual budget of roughly $100 million, the
CTCP became the largest comprehensive tobacco
control programme in the world.1e3 The $0.25/
pack increase in tobacco taxes, which funded the
programme went into effect in January 1989.
Several other components were launched in spring
1990: a statewide anti-tobacco media campaign,
community-based interventions and school-based
prevention programmes. From the beginning, the
CTCP has emphasised a strategy of changing social
norms to make tobacco use less desirable, less
acceptable and less accessible.4 5 The ultimate goal
is to reduce tobacco-related diseases, poor health
and deaths in California.6

A number of studies have been undertaken to
evaluate the impact of the CTCP.7e15 Most of them

focused on process indicators such as amount of
funding and the scope of programme implementa-
tion, smoking outcome measures such as per capita
cigarette consumption and smoking prevalence,
and percentage of population protected by smoke-
free homes or workplaces. A few studies examined
the health benefit of the CTCP. Fichtenberg and
Glantz16 found that the CTCP was associated with
an immediate reduction in deaths from heart
disease. Another study reported that from 1989 to
1999, the CTCP was associated with a 6% reduc-
tion in lung cancer incidence.17 Only one study
evaluated the economic effect of the CTCP, esti-
mating that the programme saved $86 billion in
2004 dollars of healthcare expenditures between
1989 and 2004.18 However, the long-term economic
effect of the CTCP, including reduced smoking-
related diseases (SRDs) and reduced smoking-
related deaths, has not been documented.
To the extent that the CTCP successfully reduces

the incidence of SRDs, it would save smoking-
attributable healthcare expenditures (SAEs). The
SAEs in California were estimated at $8.6 billion for
199919 and $8.7 billion for 1993.20 These estimates,
referred to as ‘gross’ SAEs,21 were based on an
annual cost of smoking approach.22 The reduction
in number of premature deaths may impose addi-
tional healthcare expenditures during the prolonged
years of life for people with avoided premature
death. The tobacco industry refers to the potential
saving from premature death as the ‘death
benefit’.23 24 Cost of smoking estimates which take
into consideration the expenditures net of the
death benefit are referred to as ‘net’ SAEs.21

The issue of the ‘gross’ versus ‘net’ SAEs was first
raised by Leu and Schaub.25 They estimated the
lifetime cost of smoking by simulating the medical
cost history of Swiss men with and without ciga-
rette smoking. They concluded that the extra years
of costs experienced by the longer-lived non-
smoking cohort approximately balanced out the
higher costs during each year of the smokers’
shortened lives. Barendregt et al26 used a dynamic
method to estimate the effects of smoking cessa-
tion on healthcare costs over time in Finland and
found that if all smokers quit, healthcare costs
would be lower at first but after 15 years there
would be a net increase in healthcare costs.
Hodgson27 used a life cycle approach to estimate
the lifetime cost of smoking in the US and found
contradictory evidence. His results showed that
ever smokers incurred higher lifetime medical
expenditures than never smokers even after
adjusting for never smokers’ additional years of life.
In the debate over whether to use the ‘gross’ or ‘net’
SAEs, Warner et al21 suggested that the net measure
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is the logically correct one if the question of interest is how
much greater a nation’s healthcare expenditures are with
smoking compared with the absence of smoking.

It is important that evaluations of public health programmes
such as the CTCP consider the impact of the programme over
time and capture the impact on mortality or longevity. For
example, smoking cessation even late in life has been shown to
increase life expectancy.28e30 Excluding this aspect of the
programme from an evaluation is implicitly placing a value of
0 on life. Thus the value of lives saved and prolonged must be
taken into account, in addition to changes in healthcare
expenditures. The objective of this study is to evaluate the long-
term net economic impact of the CTCP using models designed
to capture both these effects.

Because it is virtually impossible to separate the impact of the
tobacco tax increase from the impact of other tobacco control
activities undertaken by the CTCP, we consider them together.
Four outcome measures are considered: (1) years of life saved, (2)
years of treating SRDs averted, (3) net healthcare expenditures
saved after adjusting for additional healthcare expenditures for
people who live longer due to not smoking and (4) total
economic value of net healthcare expenditures saved and years
of life saved. The evaluation is conducted on a cohort consisting
of all men who resided in California in 1990. Since those who
did not take up smoking or who quit smoking due to the CTCP
would enjoy health benefits long into the future, we used an
evaluation period from 1990 through 2079, the year when the
youngest in 1990 would turn age 90.

METHODS
Data sources
This study relies on four data sources.

National Academy of ScienceseNational Research Council
(NAS-NRC) Twin Registry
This is the largest national twin registry in the US. It consists of
adult male twins born between 1917 and 1927 both of whom
served in the military, mostly during World War II. Two ques-
tionnaires were mailed to registry members in 1967e1969 and
1983e1985 to collect information on registrants’ smoking habits
at the time of survey. The registrants’ mortality status was
periodically obtained from the computerised records of the US
Department of Veterans Affairs (DVA),31 32 which was notified
of the death of approximately 98% of World War II veterans by
relatives or morticians who sought to claim a burial allowance.
The Twin Registry data with mortality status followed-up
through November 1999 was used to estimate the dynamic
smoking-attributable mortality model. We did not use the cause
of death information.

National Medical Expenditure Survey (NMES-2)
This is anationalhousehold survey conducted in1987whichcontains
detailed data for 34459 individuals on smoking history, healthcare
utilisation and expenditures, reasons for service use (diagnosis), source
of payment, health status and history of certain diseases.33 The
NMES-2 data were used to estimate the dynamic smoking-attribut-
ablemorbidity, health status and healthcare expendituresmodels.We
adjusted the expenditures to 1990 dollars using the medical care
component of the Consumer Price Index (CPI).35

Tobacco Use Supplement to the Current Population Survey
(TUS-CPS)
This is a national survey targeting adults aged 15 and older. It
is sponsored by the National Cancer Institute and adminis-

tered as part of the CPS, the US Census Bureau’s continuing
labour force survey.34 It contains detailed information cigarette
smoking history and other tobacco use. The sampling design
allows producing state-specific and national estimates.36 37

The 1992/93, 1995/96, 1998/99 and 2001/02 TUS-CPS data
were used to estimate population smoking initiation and
cessation rates for California and other states in the evaluation
analysis.

California Tobacco Survey (CTS)
This is a telephone survey of California residents that collects
information about tobacco use behaviour and tobacco-related
beliefs, attitudes and knowledge.38 39 The 1990 CTS Adult File
(ages 18+), Youth File (ages 12e17) and the child sample (ages
0e11) from the Screener file were used to construct a cohort of
all California male residents aged 0 and older for the evaluation
analysis. The study cohort consisted of a weighted total of
14 711 966 males of age 0 and older.

Statistical analysis
Analyses in this study were conducted using several statistical
software packages. Mathematica40 was used to derive and esti-
mate the dynamic smoking-attributable mortality model and to
predict the four outcome measures. LIMDEP V.8.041 was used to
estimate the dynamic smoking-attributable morbidity, health
status and healthcare expenditures models. SAS/STAT V.8.242

was used to estimate the population smoking initiation and
cessation rates.

Dynamic models of smoking
We developed a series of dynamic models to describe the impact
of smoking on mortality, morbidity, health status and healthcare
expenditures for men aged 40 and older. The lower boundary of
age 40 was chosen because most SRDs begin to appear at this
age. Figure 1 contains a flowchart showing the estimation
process for these models.

The smoking-attributable mortality model
This describes the dynamic relationship between an individual’s
smoking history and his annual probability of death. It is at the
core of all the other models because it yields an estimated index
for an individual’s expected tobacco exposure, given his smoking
history (age started smoking, cigarettes smoked per day, age
quit). Subsequent morbidity, health status and healthcare
expenditures models are all functions of this tobacco exposure
index. These models are dynamic in the sense that the tobacco
exposure index changes as an individual’s smoking behaviour
changes over time.
The dynamic smoking-attributable mortality model begins by

deriving a theoretical distribution of the tobacco exposure index,
which is the solution to a two-equation system of stochastic
differential equations describing the body’s ability to accumu-
late and purge tobacco toxins in relationship to smoking
behaviour and ageing over time.

d½toxcðtÞ�=dt ¼ dp� ncðtÞ (1)

d½ncðtÞ�=dt ¼ � g0 � g1 toxcðtÞþ sc dWt (2)

The first equation is an instantaneous accounting identity
stating that the time rate of change of cumulative tobacco
exposure for a current smoker (denoted by subscript c) at time t
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is equal to the difference between a smoker ’s momentary intake
of tobacco exposure at time t (ie, the product of tobacco dosage
per pack, d, and packs of cigarettes smoked per day, p) and his
momentary body purging of tobacco toxin at time t, nc(t). The
second equation describes the time rate of change of a current
smoker ’s body purging of tobacco toxin. It is specified as
a function of: (1) a constant, which represents the reduction in
purge ability due to ageing g0, (2) the cumulative tobacco
exposure, g1 toxc(t), with the assumption that the body ’s
purging ability declines with more tobacco exposure and (3) an
instantaneous white noise term, Wt. To simplify the estimation
process, we assume tobacco dosage per pack equals 1 and
tobacco exposure at time 0 is 0.

This two-equation system is the same for former smokers
except that, in equation 1, the momentary exposure term, d p, is
absent and the initial value of momentary body purging at the
time when a former smoker quits has the same expected value as
a current smoker with an identical smoking history. This spec-
ification implies that the tobacco exposure level accumulated in
the body of former smokers would be diminished over time after
they quit smoking.

The solution to equations 1 and 2 describes the expressions of
the expected value and variance of the tobacco exposure index in
the population with the same smoking history.43 Supplemen-
tary appendix 1 derives the full theoretical distribution of this
exposure index in detail.

The third equation in this analysis is a dynamic normal
survival model specified as:

Die� ðtÞ ¼ gðtÞ þ zðtÞ (3)

This equation states that the propensity to die by age t, Die*
(t), is the sum of the expected propensity to die by age t, g(t),
and a normally distributed random error term. The term g(t) is
a function of an individual’s age and the expressions of his
expected tobacco exposure index at age t. Based on equation 3,
and the expressions of the expected value and variance of the
tobacco exposure index solved from equations 1 and 2, we
derived the expressions of the hazard rate. Supplementary
appendix 2 contains detailed description for the specification of
equation 3 and the hazard rate formulation. We then estimated
the parameters of the expected tobacco exposure index and the
hazard rates with the maximum likelihood methods using the
NAS-NRC Twin Registry data. Supplementary appendix 3
presents the detailed estimated parameters.

The smoking-attributable morbidity model
This includes two equations describing the propensity of being
‘currently treated’ for two groups of SRDs in a year. The first
equation is for the group of high relative risk SRDs including
lung cancer, laryngeal cancer and chronic obstructive pulmonary
disease.44 The second equation is for the group of low relative
risk SRDs such as coronary heart disease, stroke and all other
SRDs.44 Both equations are specified as a function of individual’s
age and the expected tobacco exposure index. We estimated the
morbidity model with a Probit model45 using the NMES-2 data.
See supplementary appendix 3 for the estimated parameters.

The smoking-attributable health status model
This describes the probability distribution of individual’s self-
reported health status (excellent, good, fair, poor) for individuals
who are not currently treated for any SRDs. It is specified as
a function of an individual’s age and the expected tobacco
exposure index. We estimated the health status model with an
ordered Probit model using the NMES-2 data. See supplemen-
tary appendix 3 for the estimated parameters.

The smoking-attributable healthcare expenditures model
This describes the total healthcare expenditures of an individual
in a year, and is estimated using the NMES-2 data for three
groups of individuals stratified by disease status. For those
currently treated for high relative risk SRDs, an individual’s
expected total expenditures are estimated as the average total
expenditures of all individuals who have the same smoking
status in this group. For those currently treated for low relative
risk SRDs, an individual’s annual total expenditures are
modelled as a function of ever smoker status and his expected
poor health status. This model was estimated using the ordinary
least squares (OLS) method. For those not currently treated for
any SRDs, a two-part model46 is used to describe the propensity
of having healthcare expenditures (first-part model) and the
logarithm of the magnitude of annual expenditures for those
with positive expenditures (second-part model). The first-part
and second-part models are specified as functions of an indi-
vidual’s age, the expected tobacco exposure index, smoking
status and expected poor health status. We estimated the first-
part model with a Probit model and the second-part model with
the OLS method. See supplementary appendix 3 for the model
specification and estimated parameters.

Figure 1 Flowchart of the estimation process for the dynamic models
of smoking. Mortality model: the input includes two key variables for
each respondent, (a) smoking history and (b) mortality status (including
the date of death). From the mortality model, the parameters of the
expected tobacco exposure index and the hazard rate are estimated.
Given these parameters, the expected tobacco exposure index is
derived. Morbidity models (including two models, one for high risk
smoking-related diseases (SRDs) and another for low risk SRDs): the
two key input variables are (a) the expected tobacco exposure index and
(b) the SRDs treatment status. Health status model: the input is the
same as that for the morbidity models. The output is the expected health
status. Healthcare expenditure models (including three models
separately for individuals with high risk SRDs, individual with low risk
SRDs and individuals without SRDs): the input is the same as that for
the morbidity models and for health status model plus two additional
variables, (a) expected health status and (b) smoking history.
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Evaluation of the economic impact of the CTCP
We evaluated the economic impact of the CTCP over the full
life of a cohort of all 1990 California male residents obtained
from the 1990 CTS data. For each year, we estimated two sets
of predictions for each outcome measure. The first set was
estimated under the CTCP (the factual situation). The second
set was estimated under the assumption that the CTCP did not
exist (the counterfactual situation). The effects of the CTCP
were measured as the difference between these two sets of
predictions.25 Specifically, this evaluation consists of three
steps.

Simulate smoking initiation and cessation rates
In order to estimate the two sets of predictions, the population
smoking behaviour of the cohort under the factual and coun-
terfactual situations from 1990 to 2079 was simulated. We
focused on two measures of smoking behaviour: smoking initi-
ation and successful cessation.

We calculated the yearly smoking initiation and cessation
rates during the period of 1981e1999 using the TUS-CPS data.
Never smokers were defined as those who answered ‘no’ to the
question: ‘Have you smoked at least 100 cigarettes in your entire
life?’ Those who answer ‘yes’ were ever smokers. Ever smokers
were asked, ‘How old were you when you started smoking
cigarettes fairly regularly?’ Ever smokers were also asked
whether they currently smoked. If not, they were defined as
former smokers and were further asked: ‘About how long has it
been since you last smoked cigarettes fairly regularly?’ We
adopted previously developed techniques47e52 to calculate yearly
smoking initiation rates and cessation rates. First, we recon-
structed each respondent’s smoking status retrospectively for
each year before the year of the survey, from 1981 to 1999.
Consistent with another recent study, we assumed respondents’
state of residence did not change over time during this recon-
struction period.53 Second, we calculated smoking initiation
rates for three age groups (11e15, 16e18 and 19e22) separately
for California and for all other states by dividing the weighted
number of respondents who started smoking in a given year by
the weighted number of non-smokers in the beginning of that
year. Third, cessation rates were calculated by dividing the
weighted number of long-time quitters with at least 6 months
of abstinence who quit smoking in a given year by the weighted
number of respondents who were current smokers in the
beginning of that year. The cessation rates were calculated for
four age groups (20e34, 35e44, 45e54 and 55+) for California
and all other states. Finally, these crude rates were smoothed
using a 3-year moving average.

For each age group, a time series model of California’s
smoothed initiation (or cessation) rates during 1981e1999 was
specified as a function of all other states’ smoothed initiation (or
cessation) rates, a dummy variable measuring the effect of the
CTCP (value of 1 since 1989; 0 otherwise), and a time trend,
using a method similar to that employed by Fichtenberg and
Glantz.16 By including the rate for all other states in the model,
we controlled for changes in the California rate due to national
changes in risk factors. The simulated initiation (or cessation)
rates under the factual situation were given by the predicted
values from this model, and the simulated initiation (or cessa-
tion) rates under the counterfactual situation were also given by
the predicted values from this model except that the dummy
variable for the CTCP was assumed to be 0 in 1989 and later
years. After 1999, age-specific factual and counterfactual initia-
tion and cessation rates were assumed to be at their respective
1999 levels.

Simulate mortality, morbidity, health status and healthcare
expenditures
The simulated smoking initiation and cessation rates and the
estimated parameters from the dynamic models of smoking
were applied to the California cohort to simulate their lifetime
outcomes under the factual and counterfactual situations. For
each year from 1990 to 2079, we began to simulate who dies or
survives for individuals aged 40 and older. If an individual
survives or is not yet 40 years old, we simulated who takes up or
quits smoking and who remains at their previous year ’s smoking
status, and estimated the expected tobacco exposure index. For
individuals aged 40 and older who survives, we simulated who is
currently treated for high or low relative risk SRDs and who is
not, and for those not treated, what each individual’s expected
health status is. We then predicted each individual’s healthcare
expenditures. All of these simulations were performed under the
factual and counterfactual situations. Supplementary appendix
4 contains details of the design of the simulations.

Estimate the effects of the CTCP on four outcome measures
Given the above simulation results, we used four different
algorithms to estimate the effects of the CTCP on four outcome
measures: (1) years of life saved, (2) years of treating SRDs
averted, (3) net healthcare expenditures saved after adjusting for
additional healthcare expenditures for people who live longer
due to not smoking and (4) total economic value of net
healthcare expenditures saved and years of life saved.
In the first algorithm, an individual is dropped from the

factual and the counterfactual simulations when he dies in
either simulation. Therefore, this algorithm derives ‘gross’
healthcare savings without considering the impact of potential
prolonged years of life due to the CTCP. This is similar to what
is assumed in the annual cost of smoking studies of national and
state estimates of smoking-attributable expenditures.19 20 44 54 55

In the second algorithm, individuals who die in the factual or
counterfactual simulation are still included in the other simu-
lation until they die or reach age 90. Because more individuals
live longer due to the health benefit of the CTCP, those addi-
tional years of life lead to additional healthcare expenditures.
Therefore, this algorithm derives ‘net’ healthcare savings due to
the CTCP, analogous to the lifetime cost of smoking studies,25e27

by taking into account the reduced smoking-attributable health-
care expenditures during the years while people are alive and the
additional non-smoking-related healthcare expenditures during
the prolonged years of life.
The third and fourth algorithms consider the value of lives

saved by the CTCP in addition to net healthcare savings.
Because premature deaths from smoking usually occur among
older people who have relatively low market earnings, we valued
years of life using a willingness-to-pay (WTP) approach. While
early WTP studies implied the value of life ranging from $3
million to $7 million,56 Sloan et al29 used a conservative value of
$100 000 per life year to estimate the economic losses from
smoking-related mortality. We adopted $100 000 per year to
value the life year in 1990 with adjustments depending on each
person’s disease treatment and health status: $100 000 for
excellent health, $80 000 for good health, $50 000 for fair health
and $25 000 for poor health or being treated for SRDs. The only
difference between the third and fourth algorithms is the
discount rate used to calculate the present value of expected life
years saved (see below).
An alternative approach for considering the value of life is to

calculate disability adjusted life years (DALYs) or quality
adjusted life years (QALYs). While formally calculating DALYs
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or QALYs was beyond the scope of our study due to the lack of
data availability, we have taken into account the dimensions of
the quantity and quality of life that DALYs and QALYs capture
by assigning different values for a year of life based on disease
and health status in our third and fourth algorithms.

Discounting
In all four algorithms, the present value of healthcare expendi-
tures saved by the CTCP was estimated by taking into account
discounting as performed in the lifetime costs of smoking liter-
ature.27 29 57 58 First, considering the potential growth in future
healthcare expenditures, we expressed each person’s future
stream of annual healthcare expenditures during his expected
‘lifetime’ from age 40 to age 90 by inflating the 1990 value of the
predicted healthcare expenditure by 2% per year. The growth
rate of 2% is approximately the difference in average annual
growth rate between the CPI for medical care and the CPI for all
urban consumers during 1990e1999.35 Second, this future
stream of predicted expenditures was discounted by the rate of
time preference at 3% per year to derive the present value of the
lifetime expenditures. For any person, the healthcare expendi-
tures saved by the CTCP equalled the present value of the life-
time expenditures under the counterfactual situation minus the
present value of the lifetime expenditures under the factual
situation. Total healthcare expenditures saved for all male Cali-
fornians were obtained by summing savings across individuals,
taking into account sampling weights in the 1990 CTS data.

In the third algorithm, we discounted the value of future life
years by the rate of time preference using 3% per year.59 In the
fourth algorithm, we discounted the value of future life years by
discount rates that approximated the differential probabilities of
death among individuals of different smoking statuses. As an
approximation, we discounted a year of a current smoker ’s life
by 2%, a year of a former smoker ’s life by 1.5% and a year of
a never smoker ’s life by 1%.

RESULTS
The estimated probability of survival given age and smoking
history is illustrated in figure 2. The more exposure to tobacco
a person has had, as measured by number of decades smoked (or
formerly smoked) and by packs per day smoked, the lower the
probability that he will be alive.

Figure 3 shows the observed, predicted and simulated smoking
cessation rates for California males during 1981e1999 for four
age groups. The young adult group (20e34) had the highest
increase in cessation ratesdfrom about 2% in 1981 to over 5% in
1999dand was most responsive to the CTCP in cessation
especially after 1995, as measured by the difference between the
predicted cessation rates under the factual situation and the
simulated cessation rates under the counterfactual situation.
Figure 4 shows the observed, predicted and simulated smoking
initiation rates for three age groups. The initiation rates for
California males were lower than those for all other states,
especially for the group aged 16e18. For the groups aged 11e15
and 19e22, their initiation rates declined noticeably after 1995
and the reduction was related to the implementation of the
CTCP.
Table 1 shows the estimated economic benefits of the Cali-

fornia CTCP for the 1990 cohort followed until death. Almost
three-quarters of a million person-years of life are saved. In
addition, 141 426 person-years of treatment for the high relative
risk SRDs and 16 240 person-years of treatment for the low
relative risk SRDs are averted.
Using our first algorithm, we estimate that the CTCP saved

$1.438 billion dollars (in 1990 dollars) in healthcare costs over
the period from 1990 through 2079. The estimate is statistically
significant at p value <0.05, two-tailed test.
Our second algorithm yields an estimate of ‘net’ healthcare

savings from the CTCP, including the additional healthcare
expenditures associated with living longer due to the CTCP. The
present value of the net savings for healthcare expenditures was
estimated as �0.144 billion (in 1990 dollars), but is not statis-
tically significant.
Based on the third and fourth algorithms, we derived two

estimates for the total economic value of net healthcare savings
and years of life saved due to the CTCP, valuing a year of life at
$100 000 with adjustments for individual’s disease treatment and
health status. From the third algorithm, our estimated present
value of the total net healthcare resources saved plus the value of
years of life saved was $22.443 billion (in 1990 dollars). From the
fourth algorithm, we estimated that the CTCP would generate
$107.418 billion (in 1990 dollars) of total savings including net
healthcare saving and the value of life saved. Both estimates are
statistically significant at p value <0.05, two-tailed test.

Figure 2 Probability of survival for
men with different smoking histories.
Seven survival curves denote different
smoking histories: n, never smoker; .,
former smoker who smoked 1 pack/day
for 10 years since age 17 and quit at
age 27; $e$, former smoker who
smoked 1 pack/day for 20 years since
age 17 and quit at age 37; e e,former
smoker who smoked 1 pack/day for
30 years since age 17 and quit at age
47; 5, current smoker who smoked
0.5 pack/day since age 17; 1, current
smoker who smoked 1 pack/day since
age 17; 2, current smoker who smoked
2 pack/day since age 17. Age 17 was
chosen because it is the mean age
when male smokers began to smoke.
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DISCUSSION
Our results highlight the importance of developing a compre-
hensive measure for evaluating the impact of a tobacco control
programme that considers the value of healthcare resources
used, and also the value of years of life saved and of improved
health status associated with not smoking. A comparison of the
‘gross’ healthcare expenditures to the ‘net’ healthcare expendi-
tures shows that when the healthcare costs resulting from
longer life are considered, the healthcare savings from the CTCP
disappear. However, these approaches ignore the value of having
people live longer and healthier. When a value for life is included,
the total economic value of the benefits from the CTCP amounts
to $22.4 billion in 1990 dollars. This is more than a 15-fold
increase over the estimate of the ‘gross’ healthcare savings and
a very different result from the ‘net’ healthcare savings, which
ignore the value of life. This value is equivalent to $35.5 billion

in 2007 dollars (adjusted by the CPI). When an individual’s
probability of death is used to discount the years of life, the
CTCP would generate $107.4 billion in 1990 dollars, a 75-fold
increase over the estimate of the ‘gross’ healthcare savings. This
value is equivalent to $170.2 billion in 2007 dollars. Given that
a key public health outcome is improved health, the value of life
saved and improved health should be central to evaluating the
destructive effects of smoking, the single most important
preventable public health hazard.
During the first decade of the programme, the CTCP spent

about $1.2 billion dollars (A Roeseler, California Department of
Public Health, California Tobacco Control Program, personal
communication, 2005). This is dwarfed by the total economic
value of the net healthcare savings, lives saved and health
improved due to the programme. However, it must be noted
that our estimates result from the combined effect of the

Figure 3 Smoking cessation rates for men in California and all other states by age, 1981e1999. The actual rates (dots) represent the 3-year moving
average of the observed cessation rates for California (CA) and all other states (OTH). The predicted CA rates mean the predicted cessation rates from
the time series model under the factual situation. The simulated CA rates mean the predicted cessation rates from the time series model under the
counterfactual situation.
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tobacco tax increase and other components of the CTCP
including the statewide media campaigns, community-based
interventions and school-based prevention programmes.

There are several limitations to this study. First, women were
not included in the analysis because longitudinal data on female
mortality and smoking were unavailable. However, we postulate
that the economic effects of the CTCP for women would be on
the order of two-thirds the size of the effects for men because
the smoking prevalence rate for women was approximately 69%
of the rate for men in California.19 Thus, the total economic
value of the CTCP including men and women may be consid-
erably larger than our estimates. Further research is needed to
include women in the evaluation so that a fuller understanding
of the importance of tobacco control programmes can be
obtained. Second, for the period from 2000 to 2079, we assumed
that smoking initiation and cessation rates remain at their 1999
levels. For these rates to remain constant beyond 1999, tobacco
control efforts must be sustainable. Future research could

explore how the economic impact of the CTCP is sensitive to
post 1999 smoking rates. Third, in the analyses of yearly
smoking initiation rates and cessation rates, we assumed the
state of residence for the respondents of the TUS-CPS data was
unchanged. A recent study which compared the cessation rates
between California and a group of comparison states pointed
out that a large movement of former smokers from California to
other states during the study period would artificially inflate the
estimated cessation rate in other states, and vice versa.53 Further
research is needed to explore the smoking population’s move-
ment between states so as to determine the direction of
potential bias due to such assumption. Fourth, the simple
specification of a single dummy variable for the CTCP in the
smoking initiation and cessation equations implies that the
effect of the programme was constant over time. However, it
has been reported that the impact of the CTCP on smoking
prevalence rates was stronger during the early 1990s than during
the late 1990s, implying that the impact of the CTCP on

Figure 4 Smoking initiation rates for men in California and all other states by age, 1981e1999. The actual rates (dots) represent the 3-year moving
average of the observed initiation rates for California (CA) and all other states (OTH). The predicted CA rates mean the predicted initiation rates from
the time series model under the factual situation. The simulated CA rates mean the predicted initiation rates from the time series model under the
counterfactual situation.
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smoking initiation and cessation rates might not be constant
over time.8 Nevertheless, even with this limitation, our results
are in general consistent with the findings from a study by
Messer and Pierce et al53 which showed that from 1980 to 1999,
cessation rates increased most for the young (age 20e34), and
this age group also showed the greatest difference between
California and the comparison states. Finally, we did not include
any impact of the CTCP on secondhand smoke exposure,
though data have shown a substantial decrease in exposure over
time.

Tobacco control programmes are costly. However, the benefits
of the programmes are substantial and continue to accrue for
many years. Although those who are persuaded not to smoke
will live longer, have better health status and require additional
healthcare resources during their additional years of life, this
impact is outweighed by the value of additional years of life and
better health. Public health programmes need to be evaluated
with healthcare costs, additional years of life and improved
health considered as important outcomes.
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Evaluation of the Economic Impact of California's Tobacco 
Control Program: A Dynamic Model Approach--Appendix 1: A 
theoretical distribution of the tobacco-exposure of cigarette 
smokers when cigarettes are assumed to be a fixed product.

Leonard S. Miller
    

She  rang  under  my  feet  like  an  empty  Huntley  &
Palmer  biscuit-tin  kicked  along  a  gutter;  she  was
nothing  so  solid  in  make,  and  rather  less  pretty  in
shape, but I had expended enough hard work on her
to  make  me  love  her.   No  influential  friend  would
have served me better.  She had given me a chance
to come out a bit--to find out what I could do.  No,
I don't like work.  I had rather laze about and think
of all  the fine things that  can be done.  I don't  like
work--no man does--but I like what is in the work,--
the  chance to  find  yourself.  Your  own reality--for
yourself,  not  for  others--what  no  other  man  can
ever know.  They can only see the mere show, and
never can tell what it really means.
                                                Joseph Conrad, 
                                                Heart of Darkness.

1.  Introduction

The 25th Surgeon General's report proclaimed that "true sci-

entific  understanding  of  the  health  effects  of  tobacco"  were

achieved  in  the  20th  century"  (U.S.  Department  of  Health  and

Human Services,1989).  Major stepping stones in this understand-

ing  include  Broders'  (1920)  link  between  tobacco  use  and  lip

cancer;  Lombard  and  Doering's  (1928)  link  between  smoking  and

cancer;  and  Pearl's  (1938)  link  between  smoking  and  a  shorter

life  span.   By  1957,  the  national  Study  Group  on  Smoking  and

Health  (1957)  concluded  that  the  relationship  between  smoking

and  lung  cancer  was  causal.   In  a  very  short  time,  the  Royal

College  of  Physicians(1962)  began  to  extended  the  adverse  of

effects of tobacco to a host of other diseases.  The analysis

reported  here  is  a  part  of  this  unfolding  of  our  scientific

understanding  of  the  relationship  between  smoking  cigarettes

and  health.  The  act  of  smoking  draws  tobacco-toxin  exposure

into the lungs.  The more packs-per-day smoked, the more years

one  smokes,  the  deeper  one  inhales,  the  higher  the  tars  per

cigarette the greater the amount of tobacco-exposure deposited

in the body.  Countervailing this smoker's ingestion process is

a  biological  processes  whose  purpose  is  to  expel  extrinsic

objects  from  the  body.   These  two  processes  yield  a  resultant

level of tobacco-toxin exposure in a smoker's body at any time.

The purpose of this appendix is to derive the theoretical distri-

bution  of  these  body  resident  tobacco-exposures  for  both  cur-

rent and former cigarette smokers, given particular smoking his-

tories, and assuming that cigarettes have been a constant prod-

uct (fixed level of tars per cigarette).  I then present an out-

line  of  how  knowledge  of  this  distribution  will  be  used  to

study the effect of smoking on health outcomes.  

The tobacco-exposure distribution to be derived here arises

from consideration of a stochastic dynamically described accumu-

lation process.  Formally, the process is described by a stochas-

tic differential equation system. Section 2 explicates the two

equation  accumulation  process  for  current  cigarette-smokers.

The process is described and a summary of its solution is pre-

sented.   The  Mathematica  program  for  the  complete  current-

smoker  solution  is  presented  in  Appendix  1  to  this  appendix.

Section  3  parallels  Section  2;  its  focus  is  on  the  stochastic

dynamic  tobacco-exposure  accumulation  process  for  former

cigarette-smokers.  Again, the process is described and a sum-

mary of its solution is presented.  The Mathematica program for

the complete former-smoker solution is presented in Appendix 2

to this appendix.  

The analyses show that resident tobacco-exposures are nor-

mally distributed and that they have a heterogeneous variance.

Closed form expressions for the expected value and the variance

of these distributions are derived.  The tobacco-exposure distri-

bution  resulting  from  the  analysis  of  a  current  cigarette-

smoker is a function of five parameters; the distribution result-

ing  from  the  analysis  of  a  former-cigarette  smoker  is  a  func-

tion of one additional parameter. In section 4, I briefly out-

line how the parameters of these distributions are to be esti-

mated  and  how  the  expressions  of  the  moments  of  the  tobacco-

exposure  distributions  will  be  used  to  explain  the  effect  of

cigarette  smoking  on  diseases  caused  by  smoking  and  on  health

status.

Why engage in such an effort?  As Lewontin (2003) suggests,

the answer might come from consideration about the work such a

theoretical distribution would provide?  "Science and Simplic-

ity", New York Review of Books, May 1, 2003, pp.39-42).  Offer-

ing  two  classes  of  answers  to  this  work  question,  he  begins

with, "Sometimes theoretical structures are nothing but calculat-

ing  devices..."   Indeed,  that  is  precisely  the  principal  use

that will be made of the tobacco-exposure distribution derived

here.   As  outlined  in  Section  4,  in  the  chapters  to  follow,

empirical exercises apply the expected value of this distribu-

tion to estimate the consequence of smoking on health outcomes.

For each age and smoking history, I estimate the effect of smok-

ing on the probability of death.  Then, based on the estimated

parameters,  the  distributions  of  exposure  are  predicted  and

used to estimate the effect of a particular smoking history on:

(1) the probability of being currently treated for each of two

classes  of  smoking  related  diseases  (SRDs);  (2)  the  distribu-

tion  of  self-reported  health  status  for  those  not  currently

treated  for  SRDs;  and  on  (3)  the  marginal  cost  of  treatment.

Recognizing  that  all  of  this  has  been  done  many  times  before,

see  Max  ()  for  a  review  of  studies  and  for  the  range  of

obtained  estimates,  what  can  be  learned  from  the  effort  to  be

constructed?  First, because the full information about an indi-

vidual's  smoking  history  is  not  incorporated  into  existing

cross sectionally based estimates of the consequence from smok-

ing, the existing estimates contribute little to understanding

the economic consequences of changes in smoking behavior.  One

of the principal benefits from such an effort is the knowledge

gained  from  replacing  the  presently  employed  calculating

devices with the calculating device that will be derived here.

In efforts to understand the economic costs of smoking, the

usual  "calculating  device"  allocates  individuals  into  smoking

history categories with current, former, and never-smoker being

the  categories  most  commonly  employed.   Since  there  is  rela-

tively  little  variation  in  the  age  when  smoking  is  initiated,

when an estimated fractional allocation of medical expenditures

to smoking is age/gender and smoking status specific, estimates

for current-smokers are probably reasonably accurate.  However,

the  age  when  an  individual  quits  smoking  is  not  part  of  the

existing  specifications  for  former-smokers  and  the  effect  of

this variation is not deducible from the estimates obtained for

former-smokers.   One consequence is that existing studies make

almost  no  contribution  to  understanding  the  economic  benefits

arising from smoking cessation programs.  The possible complica-

tions  and  the  observed  averages  serve  to  further  confuse.   In

fact,  annual  estimates  of  the  level  of  expenditure  or  of  the

smoking  attributable  fraction  for  former  smokers  are  often

greater  than  annual  estimates  for  current  smokers.   If  one

believes smoking is unambiguously detrimental to health, these

findings  are  only  understandable  when  recognition  is  made  of

the fact that smokers quit for different reasons.  Some smokers

become  sick  with  a  smoking  related  disease.   Upon  physician's

advise,  they  quit.   Their  increased  medical  expenditures  are

associated with their smoking related disease.  While these addi-

tional  expenditures  are  appropriately  allocatable  to  smoking,

they do not reflect their newly initiated category of "former-

smoker."  Other smokers have a revelation about the importance

of  health  on  their  own  and  their  family's  well-being  and  they

quit  as  a  means  to  an  end.   These  individuals  may  also  make

greater  use  of  discretionary  medical  expenditures,  but  these

additional medical expenditures arise from a change in the quit-

ter's  demand  for  health  services.   These  expenditures  are  not

allocatable to tobacco-usage either.  

In  addition  to  the  lack  of  a  complete  description  (or  of

the  major  dimensions  of)  an  individual's  smoking  history,

another important dimension about smoking history that is omit-

ted  from  most  of  the  extant  specifications  focuses  on  dosage.

If one is concerned with the economic benefits associated with

smoking  cessation  programs,  as  the  sponsors  of  this  research

are, one would want to be able to estimate the health benefits

that  accompany  a  reduction  in  some  of  the  populations'  daily

consumption  of  cigarettes,  and/or  the  health  benefits  associ-

ated  with  quitting  for  particularly  critical  periods  of  time,

such  as  during  the  period  that  a  woman  is  pregnant.   Since

dosage  is  not  integrated  into  the  current  "computational

devises",  any  benefits  derived  from  dosage  reduction  are  not

addressable with the existing smoking computational devises.  

Programs established to promote cessation in smoking behav-

ior reap benefits when they reduce the smoking attributable phys-

ical outcomes requiring medical services.  The economic evalua-

tion of these programs require being able to estimate the reduc-

tion in medical services caused by smoking, given smoking his-

tory.  To estimate such results is precisely the point of this

effort.  The theoretical "work" makes feasible estimates of the

physical consequences of smoking on a full (perhaps fuller is a

better  way  to  put  it)  statement  about  an  individual's  smoking

history.

Lewontin's  (2003)  second  category  for  theory  work  is  that

it "...help(s) us "understand" a process whose outcome has been

observed but whose dynamical details are not known from experi-

ment or observation."  For the topic at hand,  Lewontin is dis-

cussing science as understood by scientists.   There has been a

great deal of work of late understanding the dynamic process of

smoking induced cellular abnormality development (REF to latest

surgeons general report).  For example, exposure to a number of

things in everyday life, from sunlight to cigarette smoke, can

degrade DNA, but our bodies have developed mechanisms to miti-

gate this damage (Sarah Graham, Scientific American.com, News,

September  03,  2003).   Livneh  and  colleagues  (Journal  of  the

National Cancer Institute) studied the role of a repair enzyme

known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   
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known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   
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1.  Introduction

The 25th Surgeon General's report proclaimed that "true sci-

entific  understanding  of  the  health  effects  of  tobacco"  were

achieved  in  the  20th  century"  (U.S.  Department  of  Health  and

Human Services,1989).  Major stepping stones in this understand-

ing  include  Broders'  (1920)  link  between  tobacco  use  and  lip

cancer;  Lombard  and  Doering's  (1928)  link  between  smoking  and

cancer;  and  Pearl's  (1938)  link  between  smoking  and  a  shorter

life  span.   By  1957,  the  national  Study  Group  on  Smoking  and

Health  (1957)  concluded  that  the  relationship  between  smoking

and  lung  cancer  was  causal.   In  a  very  short  time,  the  Royal

College  of  Physicians(1962)  began  to  extended  the  adverse  of

effects of tobacco to a host of other diseases.  The analysis

reported  here  is  a  part  of  this  unfolding  of  our  scientific

understanding  of  the  relationship  between  smoking  cigarettes

and  health.  The  act  of  smoking  draws  tobacco-toxin  exposure

into the lungs.  The more packs-per-day smoked, the more years

one  smokes,  the  deeper  one  inhales,  the  higher  the  tars  per

cigarette the greater the amount of tobacco-exposure deposited

in the body.  Countervailing this smoker's ingestion process is

a  biological  processes  whose  purpose  is  to  expel  extrinsic

objects  from  the  body.   These  two  processes  yield  a  resultant

level of tobacco-toxin exposure in a smoker's body at any time.

The purpose of this appendix is to derive the theoretical distri-

bution  of  these  body  resident  tobacco-exposures  for  both  cur-

rent and former cigarette smokers, given particular smoking his-

tories, and assuming that cigarettes have been a constant prod-

uct (fixed level of tars per cigarette).  I then present an out-

line  of  how  knowledge  of  this  distribution  will  be  used  to

study the effect of smoking on health outcomes.  

The tobacco-exposure distribution to be derived here arises

from consideration of a stochastic dynamically described accumu-

lation process.  Formally, the process is described by a stochas-

tic differential equation system. Section 2 explicates the two

equation  accumulation  process  for  current  cigarette-smokers.

The process is described and a summary of its solution is pre-

sented.   The  Mathematica  program  for  the  complete  current-

smoker  solution  is  presented  in  Appendix  1  to  this  appendix.

Section  3  parallels  Section  2;  its  focus  is  on  the  stochastic

dynamic  tobacco-exposure  accumulation  process  for  former

cigarette-smokers.  Again, the process is described and a sum-

mary of its solution is presented.  The Mathematica program for

the complete former-smoker solution is presented in Appendix 2

to this appendix.  

The analyses show that resident tobacco-exposures are nor-

mally distributed and that they have a heterogeneous variance.

Closed form expressions for the expected value and the variance

of these distributions are derived.  The tobacco-exposure distri-

bution  resulting  from  the  analysis  of  a  current  cigarette-

smoker is a function of five parameters; the distribution result-

ing  from  the  analysis  of  a  former-cigarette  smoker  is  a  func-

tion of one additional parameter. In section 4, I briefly out-

line how the parameters of these distributions are to be esti-

mated  and  how  the  expressions  of  the  moments  of  the  tobacco-

exposure  distributions  will  be  used  to  explain  the  effect  of

cigarette  smoking  on  diseases  caused  by  smoking  and  on  health

status.

Why engage in such an effort?  As Lewontin (2003) suggests,

the answer might come from consideration about the work such a

theoretical distribution would provide?  "Science and Simplic-

ity", New York Review of Books, May 1, 2003, pp.39-42).  Offer-

ing  two  classes  of  answers  to  this  work  question,  he  begins

with, "Sometimes theoretical structures are nothing but calculat-

ing  devices..."   Indeed,  that  is  precisely  the  principal  use

that will be made of the tobacco-exposure distribution derived

here.   As  outlined  in  Section  4,  in  the  chapters  to  follow,

empirical exercises apply the expected value of this distribu-

tion to estimate the consequence of smoking on health outcomes.

For each age and smoking history, I estimate the effect of smok-

ing on the probability of death.  Then, based on the estimated

parameters,  the  distributions  of  exposure  are  predicted  and

used to estimate the effect of a particular smoking history on:

(1) the probability of being currently treated for each of two

classes  of  smoking  related  diseases  (SRDs);  (2)  the  distribu-

tion  of  self-reported  health  status  for  those  not  currently

treated  for  SRDs;  and  on  (3)  the  marginal  cost  of  treatment.

Recognizing  that  all  of  this  has  been  done  many  times  before,

see  Max  ()  for  a  review  of  studies  and  for  the  range  of

obtained  estimates,  what  can  be  learned  from  the  effort  to  be

constructed?  First, because the full information about an indi-

vidual's  smoking  history  is  not  incorporated  into  existing

cross sectionally based estimates of the consequence from smok-

ing, the existing estimates contribute little to understanding

the economic consequences of changes in smoking behavior.  One

of the principal benefits from such an effort is the knowledge

gained  from  replacing  the  presently  employed  calculating

devices with the calculating device that will be derived here.

In efforts to understand the economic costs of smoking, the

usual  "calculating  device"  allocates  individuals  into  smoking

history categories with current, former, and never-smoker being

the  categories  most  commonly  employed.   Since  there  is  rela-

tively  little  variation  in  the  age  when  smoking  is  initiated,

when an estimated fractional allocation of medical expenditures

to smoking is age/gender and smoking status specific, estimates

for current-smokers are probably reasonably accurate.  However,

the  age  when  an  individual  quits  smoking  is  not  part  of  the

existing  specifications  for  former-smokers  and  the  effect  of

this variation is not deducible from the estimates obtained for

former-smokers.   One consequence is that existing studies make

almost  no  contribution  to  understanding  the  economic  benefits

arising from smoking cessation programs.  The possible complica-

tions  and  the  observed  averages  serve  to  further  confuse.   In

fact,  annual  estimates  of  the  level  of  expenditure  or  of  the

smoking  attributable  fraction  for  former  smokers  are  often

greater  than  annual  estimates  for  current  smokers.   If  one

believes smoking is unambiguously detrimental to health, these

findings  are  only  understandable  when  recognition  is  made  of

the fact that smokers quit for different reasons.  Some smokers

become  sick  with  a  smoking  related  disease.   Upon  physician's

advise,  they  quit.   Their  increased  medical  expenditures  are

associated with their smoking related disease.  While these addi-

tional  expenditures  are  appropriately  allocatable  to  smoking,

they do not reflect their newly initiated category of "former-

smoker."  Other smokers have a revelation about the importance

of  health  on  their  own  and  their  family's  well-being  and  they

quit  as  a  means  to  an  end.   These  individuals  may  also  make

greater  use  of  discretionary  medical  expenditures,  but  these

additional medical expenditures arise from a change in the quit-

ter's  demand  for  health  services.   These  expenditures  are  not

allocatable to tobacco-usage either.  

In  addition  to  the  lack  of  a  complete  description  (or  of

the  major  dimensions  of)  an  individual's  smoking  history,

another important dimension about smoking history that is omit-

ted  from  most  of  the  extant  specifications  focuses  on  dosage.

If one is concerned with the economic benefits associated with

smoking  cessation  programs,  as  the  sponsors  of  this  research

are, one would want to be able to estimate the health benefits

that  accompany  a  reduction  in  some  of  the  populations'  daily

consumption  of  cigarettes,  and/or  the  health  benefits  associ-

ated  with  quitting  for  particularly  critical  periods  of  time,

such  as  during  the  period  that  a  woman  is  pregnant.   Since

dosage  is  not  integrated  into  the  current  "computational

devises",  any  benefits  derived  from  dosage  reduction  are  not

addressable with the existing smoking computational devises.  

Programs established to promote cessation in smoking behav-

ior reap benefits when they reduce the smoking attributable phys-

ical outcomes requiring medical services.  The economic evalua-

tion of these programs require being able to estimate the reduc-

tion in medical services caused by smoking, given smoking his-

tory.  To estimate such results is precisely the point of this

effort.  The theoretical "work" makes feasible estimates of the

physical consequences of smoking on a full (perhaps fuller is a

better  way  to  put  it)  statement  about  an  individual's  smoking

history.

Lewontin's  (2003)  second  category  for  theory  work  is  that

it "...help(s) us "understand" a process whose outcome has been

observed but whose dynamical details are not known from experi-

ment or observation."  For the topic at hand,  Lewontin is dis-

cussing science as understood by scientists.   There has been a

great deal of work of late understanding the dynamic process of

smoking induced cellular abnormality development (REF to latest

surgeons general report).  For example, exposure to a number of

things in everyday life, from sunlight to cigarette smoke, can

degrade DNA, but our bodies have developed mechanisms to miti-

gate this damage (Sarah Graham, Scientific American.com, News,

September  03,  2003).   Livneh  and  colleagues  (Journal  of  the

National Cancer Institute) studied the role of a repair enzyme

known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   
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1.  Introduction

The 25th Surgeon General's report proclaimed that "true sci-

entific  understanding  of  the  health  effects  of  tobacco"  were

achieved  in  the  20th  century"  (U.S.  Department  of  Health  and

Human Services,1989).  Major stepping stones in this understand-

ing  include  Broders'  (1920)  link  between  tobacco  use  and  lip

cancer;  Lombard  and  Doering's  (1928)  link  between  smoking  and

cancer;  and  Pearl's  (1938)  link  between  smoking  and  a  shorter

life  span.   By  1957,  the  national  Study  Group  on  Smoking  and

Health  (1957)  concluded  that  the  relationship  between  smoking

and  lung  cancer  was  causal.   In  a  very  short  time,  the  Royal

College  of  Physicians(1962)  began  to  extended  the  adverse  of

effects of tobacco to a host of other diseases.  The analysis

reported  here  is  a  part  of  this  unfolding  of  our  scientific

understanding  of  the  relationship  between  smoking  cigarettes

and  health.  The  act  of  smoking  draws  tobacco-toxin  exposure

into the lungs.  The more packs-per-day smoked, the more years

one  smokes,  the  deeper  one  inhales,  the  higher  the  tars  per

cigarette the greater the amount of tobacco-exposure deposited

in the body.  Countervailing this smoker's ingestion process is

a  biological  processes  whose  purpose  is  to  expel  extrinsic

objects  from  the  body.   These  two  processes  yield  a  resultant

level of tobacco-toxin exposure in a smoker's body at any time.

The purpose of this appendix is to derive the theoretical distri-

bution  of  these  body  resident  tobacco-exposures  for  both  cur-

rent and former cigarette smokers, given particular smoking his-

tories, and assuming that cigarettes have been a constant prod-

uct (fixed level of tars per cigarette).  I then present an out-

line  of  how  knowledge  of  this  distribution  will  be  used  to

study the effect of smoking on health outcomes.  

The tobacco-exposure distribution to be derived here arises

from consideration of a stochastic dynamically described accumu-

lation process.  Formally, the process is described by a stochas-

tic differential equation system. Section 2 explicates the two

equation  accumulation  process  for  current  cigarette-smokers.

The process is described and a summary of its solution is pre-

sented.   The  Mathematica  program  for  the  complete  current-

smoker  solution  is  presented  in  Appendix  1  to  this  appendix.

Section  3  parallels  Section  2;  its  focus  is  on  the  stochastic

dynamic  tobacco-exposure  accumulation  process  for  former

cigarette-smokers.  Again, the process is described and a sum-

mary of its solution is presented.  The Mathematica program for

the complete former-smoker solution is presented in Appendix 2

to this appendix.  

The analyses show that resident tobacco-exposures are nor-

mally distributed and that they have a heterogeneous variance.

Closed form expressions for the expected value and the variance

of these distributions are derived.  The tobacco-exposure distri-

bution  resulting  from  the  analysis  of  a  current  cigarette-

smoker is a function of five parameters; the distribution result-

ing  from  the  analysis  of  a  former-cigarette  smoker  is  a  func-

tion of one additional parameter. In section 4, I briefly out-

line how the parameters of these distributions are to be esti-

mated  and  how  the  expressions  of  the  moments  of  the  tobacco-

exposure  distributions  will  be  used  to  explain  the  effect  of

cigarette  smoking  on  diseases  caused  by  smoking  and  on  health

status.

Why engage in such an effort?  As Lewontin (2003) suggests,

the answer might come from consideration about the work such a

theoretical distribution would provide?  "Science and Simplic-

ity", New York Review of Books, May 1, 2003, pp.39-42).  Offer-

ing  two  classes  of  answers  to  this  work  question,  he  begins

with, "Sometimes theoretical structures are nothing but calculat-

ing  devices..."   Indeed,  that  is  precisely  the  principal  use

that will be made of the tobacco-exposure distribution derived

here.   As  outlined  in  Section  4,  in  the  chapters  to  follow,

empirical exercises apply the expected value of this distribu-

tion to estimate the consequence of smoking on health outcomes.

For each age and smoking history, I estimate the effect of smok-

ing on the probability of death.  Then, based on the estimated

parameters,  the  distributions  of  exposure  are  predicted  and

used to estimate the effect of a particular smoking history on:

(1) the probability of being currently treated for each of two

classes  of  smoking  related  diseases  (SRDs);  (2)  the  distribu-

tion  of  self-reported  health  status  for  those  not  currently

treated  for  SRDs;  and  on  (3)  the  marginal  cost  of  treatment.

Recognizing  that  all  of  this  has  been  done  many  times  before,

see  Max  ()  for  a  review  of  studies  and  for  the  range  of

obtained  estimates,  what  can  be  learned  from  the  effort  to  be

constructed?  First, because the full information about an indi-

vidual's  smoking  history  is  not  incorporated  into  existing

cross sectionally based estimates of the consequence from smok-

ing, the existing estimates contribute little to understanding

the economic consequences of changes in smoking behavior.  One

of the principal benefits from such an effort is the knowledge

gained  from  replacing  the  presently  employed  calculating

devices with the calculating device that will be derived here.

In efforts to understand the economic costs of smoking, the

usual  "calculating  device"  allocates  individuals  into  smoking

history categories with current, former, and never-smoker being

the  categories  most  commonly  employed.   Since  there  is  rela-

tively  little  variation  in  the  age  when  smoking  is  initiated,

when an estimated fractional allocation of medical expenditures

to smoking is age/gender and smoking status specific, estimates

for current-smokers are probably reasonably accurate.  However,

the  age  when  an  individual  quits  smoking  is  not  part  of  the

existing  specifications  for  former-smokers  and  the  effect  of

this variation is not deducible from the estimates obtained for

former-smokers.   One consequence is that existing studies make

almost  no  contribution  to  understanding  the  economic  benefits

arising from smoking cessation programs.  The possible complica-

tions  and  the  observed  averages  serve  to  further  confuse.   In

fact,  annual  estimates  of  the  level  of  expenditure  or  of  the

smoking  attributable  fraction  for  former  smokers  are  often

greater  than  annual  estimates  for  current  smokers.   If  one

believes smoking is unambiguously detrimental to health, these

findings  are  only  understandable  when  recognition  is  made  of

the fact that smokers quit for different reasons.  Some smokers

become  sick  with  a  smoking  related  disease.   Upon  physician's

advise,  they  quit.   Their  increased  medical  expenditures  are

associated with their smoking related disease.  While these addi-

tional  expenditures  are  appropriately  allocatable  to  smoking,

they do not reflect their newly initiated category of "former-

smoker."  Other smokers have a revelation about the importance

of  health  on  their  own  and  their  family's  well-being  and  they

quit  as  a  means  to  an  end.   These  individuals  may  also  make

greater  use  of  discretionary  medical  expenditures,  but  these

additional medical expenditures arise from a change in the quit-

ter's  demand  for  health  services.   These  expenditures  are  not

allocatable to tobacco-usage either.  

In  addition  to  the  lack  of  a  complete  description  (or  of

the  major  dimensions  of)  an  individual's  smoking  history,

another important dimension about smoking history that is omit-

ted  from  most  of  the  extant  specifications  focuses  on  dosage.

If one is concerned with the economic benefits associated with

smoking  cessation  programs,  as  the  sponsors  of  this  research

are, one would want to be able to estimate the health benefits

that  accompany  a  reduction  in  some  of  the  populations'  daily

consumption  of  cigarettes,  and/or  the  health  benefits  associ-

ated  with  quitting  for  particularly  critical  periods  of  time,

such  as  during  the  period  that  a  woman  is  pregnant.   Since

dosage  is  not  integrated  into  the  current  "computational

devises",  any  benefits  derived  from  dosage  reduction  are  not

addressable with the existing smoking computational devises.  

Programs established to promote cessation in smoking behav-

ior reap benefits when they reduce the smoking attributable phys-

ical outcomes requiring medical services.  The economic evalua-

tion of these programs require being able to estimate the reduc-

tion in medical services caused by smoking, given smoking his-

tory.  To estimate such results is precisely the point of this

effort.  The theoretical "work" makes feasible estimates of the

physical consequences of smoking on a full (perhaps fuller is a

better  way  to  put  it)  statement  about  an  individual's  smoking

history.

Lewontin's  (2003)  second  category  for  theory  work  is  that

it "...help(s) us "understand" a process whose outcome has been

observed but whose dynamical details are not known from experi-

ment or observation."  For the topic at hand,  Lewontin is dis-

cussing science as understood by scientists.   There has been a

great deal of work of late understanding the dynamic process of

smoking induced cellular abnormality development (REF to latest

surgeons general report).  For example, exposure to a number of

things in everyday life, from sunlight to cigarette smoke, can

degrade DNA, but our bodies have developed mechanisms to miti-

gate this damage (Sarah Graham, Scientific American.com, News,

September  03,  2003).   Livneh  and  colleagues  (Journal  of  the

National Cancer Institute) studied the role of a repair enzyme

known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   
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1.  Introduction

The 25th Surgeon General's report proclaimed that "true sci-

entific  understanding  of  the  health  effects  of  tobacco"  were

achieved  in  the  20th  century"  (U.S.  Department  of  Health  and

Human Services,1989).  Major stepping stones in this understand-

ing  include  Broders'  (1920)  link  between  tobacco  use  and  lip

cancer;  Lombard  and  Doering's  (1928)  link  between  smoking  and

cancer;  and  Pearl's  (1938)  link  between  smoking  and  a  shorter

life  span.   By  1957,  the  national  Study  Group  on  Smoking  and

Health  (1957)  concluded  that  the  relationship  between  smoking

and  lung  cancer  was  causal.   In  a  very  short  time,  the  Royal

College  of  Physicians(1962)  began  to  extended  the  adverse  of

effects of tobacco to a host of other diseases.  The analysis

reported  here  is  a  part  of  this  unfolding  of  our  scientific

understanding  of  the  relationship  between  smoking  cigarettes

and  health.  The  act  of  smoking  draws  tobacco-toxin  exposure

into the lungs.  The more packs-per-day smoked, the more years

one  smokes,  the  deeper  one  inhales,  the  higher  the  tars  per

cigarette the greater the amount of tobacco-exposure deposited

in the body.  Countervailing this smoker's ingestion process is

a  biological  processes  whose  purpose  is  to  expel  extrinsic

objects  from  the  body.   These  two  processes  yield  a  resultant

level of tobacco-toxin exposure in a smoker's body at any time.

The purpose of this appendix is to derive the theoretical distri-

bution  of  these  body  resident  tobacco-exposures  for  both  cur-

rent and former cigarette smokers, given particular smoking his-

tories, and assuming that cigarettes have been a constant prod-

uct (fixed level of tars per cigarette).  I then present an out-

line  of  how  knowledge  of  this  distribution  will  be  used  to

study the effect of smoking on health outcomes.  

The tobacco-exposure distribution to be derived here arises

from consideration of a stochastic dynamically described accumu-

lation process.  Formally, the process is described by a stochas-

tic differential equation system. Section 2 explicates the two

equation  accumulation  process  for  current  cigarette-smokers.

The process is described and a summary of its solution is pre-

sented.   The  Mathematica  program  for  the  complete  current-

smoker  solution  is  presented  in  Appendix  1  to  this  appendix.

Section  3  parallels  Section  2;  its  focus  is  on  the  stochastic

dynamic  tobacco-exposure  accumulation  process  for  former

cigarette-smokers.  Again, the process is described and a sum-

mary of its solution is presented.  The Mathematica program for

the complete former-smoker solution is presented in Appendix 2

to this appendix.  

The analyses show that resident tobacco-exposures are nor-

mally distributed and that they have a heterogeneous variance.

Closed form expressions for the expected value and the variance

of these distributions are derived.  The tobacco-exposure distri-

bution  resulting  from  the  analysis  of  a  current  cigarette-

smoker is a function of five parameters; the distribution result-

ing  from  the  analysis  of  a  former-cigarette  smoker  is  a  func-

tion of one additional parameter. In section 4, I briefly out-

line how the parameters of these distributions are to be esti-

mated  and  how  the  expressions  of  the  moments  of  the  tobacco-

exposure  distributions  will  be  used  to  explain  the  effect  of

cigarette  smoking  on  diseases  caused  by  smoking  and  on  health

status.

Why engage in such an effort?  As Lewontin (2003) suggests,

the answer might come from consideration about the work such a

theoretical distribution would provide?  "Science and Simplic-

ity", New York Review of Books, May 1, 2003, pp.39-42).  Offer-

ing  two  classes  of  answers  to  this  work  question,  he  begins

with, "Sometimes theoretical structures are nothing but calculat-

ing  devices..."   Indeed,  that  is  precisely  the  principal  use

that will be made of the tobacco-exposure distribution derived

here.   As  outlined  in  Section  4,  in  the  chapters  to  follow,

empirical exercises apply the expected value of this distribu-

tion to estimate the consequence of smoking on health outcomes.

For each age and smoking history, I estimate the effect of smok-

ing on the probability of death.  Then, based on the estimated

parameters,  the  distributions  of  exposure  are  predicted  and

used to estimate the effect of a particular smoking history on:

(1) the probability of being currently treated for each of two

classes  of  smoking  related  diseases  (SRDs);  (2)  the  distribu-

tion  of  self-reported  health  status  for  those  not  currently

treated  for  SRDs;  and  on  (3)  the  marginal  cost  of  treatment.

Recognizing  that  all  of  this  has  been  done  many  times  before,

see  Max  ()  for  a  review  of  studies  and  for  the  range  of

obtained  estimates,  what  can  be  learned  from  the  effort  to  be

constructed?  First, because the full information about an indi-

vidual's  smoking  history  is  not  incorporated  into  existing

cross sectionally based estimates of the consequence from smok-

ing, the existing estimates contribute little to understanding

the economic consequences of changes in smoking behavior.  One

of the principal benefits from such an effort is the knowledge

gained  from  replacing  the  presently  employed  calculating

devices with the calculating device that will be derived here.

In efforts to understand the economic costs of smoking, the

usual  "calculating  device"  allocates  individuals  into  smoking

history categories with current, former, and never-smoker being

the  categories  most  commonly  employed.   Since  there  is  rela-

tively  little  variation  in  the  age  when  smoking  is  initiated,

when an estimated fractional allocation of medical expenditures

to smoking is age/gender and smoking status specific, estimates

for current-smokers are probably reasonably accurate.  However,

the  age  when  an  individual  quits  smoking  is  not  part  of  the

existing  specifications  for  former-smokers  and  the  effect  of

this variation is not deducible from the estimates obtained for

former-smokers.   One consequence is that existing studies make

almost  no  contribution  to  understanding  the  economic  benefits

arising from smoking cessation programs.  The possible complica-

tions  and  the  observed  averages  serve  to  further  confuse.   In

fact,  annual  estimates  of  the  level  of  expenditure  or  of  the

smoking  attributable  fraction  for  former  smokers  are  often

greater  than  annual  estimates  for  current  smokers.   If  one

believes smoking is unambiguously detrimental to health, these

findings  are  only  understandable  when  recognition  is  made  of

the fact that smokers quit for different reasons.  Some smokers

become  sick  with  a  smoking  related  disease.   Upon  physician's

advise,  they  quit.   Their  increased  medical  expenditures  are

associated with their smoking related disease.  While these addi-

tional  expenditures  are  appropriately  allocatable  to  smoking,

they do not reflect their newly initiated category of "former-

smoker."  Other smokers have a revelation about the importance

of  health  on  their  own  and  their  family's  well-being  and  they

quit  as  a  means  to  an  end.   These  individuals  may  also  make

greater  use  of  discretionary  medical  expenditures,  but  these

additional medical expenditures arise from a change in the quit-

ter's  demand  for  health  services.   These  expenditures  are  not

allocatable to tobacco-usage either.  

In  addition  to  the  lack  of  a  complete  description  (or  of

the  major  dimensions  of)  an  individual's  smoking  history,

another important dimension about smoking history that is omit-

ted  from  most  of  the  extant  specifications  focuses  on  dosage.

If one is concerned with the economic benefits associated with

smoking  cessation  programs,  as  the  sponsors  of  this  research

are, one would want to be able to estimate the health benefits

that  accompany  a  reduction  in  some  of  the  populations'  daily

consumption  of  cigarettes,  and/or  the  health  benefits  associ-

ated  with  quitting  for  particularly  critical  periods  of  time,

such  as  during  the  period  that  a  woman  is  pregnant.   Since

dosage  is  not  integrated  into  the  current  "computational

devises",  any  benefits  derived  from  dosage  reduction  are  not

addressable with the existing smoking computational devises.  

Programs established to promote cessation in smoking behav-

ior reap benefits when they reduce the smoking attributable phys-

ical outcomes requiring medical services.  The economic evalua-

tion of these programs require being able to estimate the reduc-

tion in medical services caused by smoking, given smoking his-

tory.  To estimate such results is precisely the point of this

effort.  The theoretical "work" makes feasible estimates of the

physical consequences of smoking on a full (perhaps fuller is a

better  way  to  put  it)  statement  about  an  individual's  smoking

history.

Lewontin's  (2003)  second  category  for  theory  work  is  that

it "...help(s) us "understand" a process whose outcome has been

observed but whose dynamical details are not known from experi-

ment or observation."  For the topic at hand,  Lewontin is dis-

cussing science as understood by scientists.   There has been a

great deal of work of late understanding the dynamic process of

smoking induced cellular abnormality development (REF to latest

surgeons general report).  For example, exposure to a number of

things in everyday life, from sunlight to cigarette smoke, can

degrade DNA, but our bodies have developed mechanisms to miti-

gate this damage (Sarah Graham, Scientific American.com, News,

September  03,  2003).   Livneh  and  colleagues  (Journal  of  the

National Cancer Institute) studied the role of a repair enzyme

known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   
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1.  Introduction

The 25th Surgeon General's report proclaimed that "true sci-

entific  understanding  of  the  health  effects  of  tobacco"  were

achieved  in  the  20th  century"  (U.S.  Department  of  Health  and

Human Services,1989).  Major stepping stones in this understand-

ing  include  Broders'  (1920)  link  between  tobacco  use  and  lip

cancer;  Lombard  and  Doering's  (1928)  link  between  smoking  and

cancer;  and  Pearl's  (1938)  link  between  smoking  and  a  shorter

life  span.   By  1957,  the  national  Study  Group  on  Smoking  and

Health  (1957)  concluded  that  the  relationship  between  smoking

and  lung  cancer  was  causal.   In  a  very  short  time,  the  Royal

College  of  Physicians(1962)  began  to  extended  the  adverse  of

effects of tobacco to a host of other diseases.  The analysis

reported  here  is  a  part  of  this  unfolding  of  our  scientific

understanding  of  the  relationship  between  smoking  cigarettes

and  health.  The  act  of  smoking  draws  tobacco-toxin  exposure

into the lungs.  The more packs-per-day smoked, the more years

one  smokes,  the  deeper  one  inhales,  the  higher  the  tars  per

cigarette the greater the amount of tobacco-exposure deposited

in the body.  Countervailing this smoker's ingestion process is

a  biological  processes  whose  purpose  is  to  expel  extrinsic

objects  from  the  body.   These  two  processes  yield  a  resultant

level of tobacco-toxin exposure in a smoker's body at any time.

The purpose of this appendix is to derive the theoretical distri-

bution  of  these  body  resident  tobacco-exposures  for  both  cur-

rent and former cigarette smokers, given particular smoking his-

tories, and assuming that cigarettes have been a constant prod-

uct (fixed level of tars per cigarette).  I then present an out-

line  of  how  knowledge  of  this  distribution  will  be  used  to

study the effect of smoking on health outcomes.  

The tobacco-exposure distribution to be derived here arises

from consideration of a stochastic dynamically described accumu-

lation process.  Formally, the process is described by a stochas-

tic differential equation system. Section 2 explicates the two

equation  accumulation  process  for  current  cigarette-smokers.

The process is described and a summary of its solution is pre-

sented.   The  Mathematica  program  for  the  complete  current-

smoker  solution  is  presented  in  Appendix  1  to  this  appendix.

Section  3  parallels  Section  2;  its  focus  is  on  the  stochastic

dynamic  tobacco-exposure  accumulation  process  for  former

cigarette-smokers.  Again, the process is described and a sum-

mary of its solution is presented.  The Mathematica program for

the complete former-smoker solution is presented in Appendix 2

to this appendix.  

The analyses show that resident tobacco-exposures are nor-

mally distributed and that they have a heterogeneous variance.

Closed form expressions for the expected value and the variance

of these distributions are derived.  The tobacco-exposure distri-

bution  resulting  from  the  analysis  of  a  current  cigarette-

smoker is a function of five parameters; the distribution result-

ing  from  the  analysis  of  a  former-cigarette  smoker  is  a  func-

tion of one additional parameter. In section 4, I briefly out-

line how the parameters of these distributions are to be esti-

mated  and  how  the  expressions  of  the  moments  of  the  tobacco-

exposure  distributions  will  be  used  to  explain  the  effect  of

cigarette  smoking  on  diseases  caused  by  smoking  and  on  health

status.

Why engage in such an effort?  As Lewontin (2003) suggests,

the answer might come from consideration about the work such a

theoretical distribution would provide?  "Science and Simplic-

ity", New York Review of Books, May 1, 2003, pp.39-42).  Offer-

ing  two  classes  of  answers  to  this  work  question,  he  begins

with, "Sometimes theoretical structures are nothing but calculat-

ing  devices..."   Indeed,  that  is  precisely  the  principal  use

that will be made of the tobacco-exposure distribution derived

here.   As  outlined  in  Section  4,  in  the  chapters  to  follow,

empirical exercises apply the expected value of this distribu-

tion to estimate the consequence of smoking on health outcomes.

For each age and smoking history, I estimate the effect of smok-

ing on the probability of death.  Then, based on the estimated

parameters,  the  distributions  of  exposure  are  predicted  and

used to estimate the effect of a particular smoking history on:

(1) the probability of being currently treated for each of two

classes  of  smoking  related  diseases  (SRDs);  (2)  the  distribu-

tion  of  self-reported  health  status  for  those  not  currently

treated  for  SRDs;  and  on  (3)  the  marginal  cost  of  treatment.

Recognizing  that  all  of  this  has  been  done  many  times  before,

see  Max  ()  for  a  review  of  studies  and  for  the  range  of

obtained  estimates,  what  can  be  learned  from  the  effort  to  be

constructed?  First, because the full information about an indi-

vidual's  smoking  history  is  not  incorporated  into  existing

cross sectionally based estimates of the consequence from smok-

ing, the existing estimates contribute little to understanding

the economic consequences of changes in smoking behavior.  One

of the principal benefits from such an effort is the knowledge

gained  from  replacing  the  presently  employed  calculating

devices with the calculating device that will be derived here.

In efforts to understand the economic costs of smoking, the

usual  "calculating  device"  allocates  individuals  into  smoking

history categories with current, former, and never-smoker being

the  categories  most  commonly  employed.   Since  there  is  rela-

tively  little  variation  in  the  age  when  smoking  is  initiated,

when an estimated fractional allocation of medical expenditures

to smoking is age/gender and smoking status specific, estimates

for current-smokers are probably reasonably accurate.  However,

the  age  when  an  individual  quits  smoking  is  not  part  of  the

existing  specifications  for  former-smokers  and  the  effect  of

this variation is not deducible from the estimates obtained for

former-smokers.   One consequence is that existing studies make

almost  no  contribution  to  understanding  the  economic  benefits

arising from smoking cessation programs.  The possible complica-

tions  and  the  observed  averages  serve  to  further  confuse.   In

fact,  annual  estimates  of  the  level  of  expenditure  or  of  the

smoking  attributable  fraction  for  former  smokers  are  often

greater  than  annual  estimates  for  current  smokers.   If  one

believes smoking is unambiguously detrimental to health, these

findings  are  only  understandable  when  recognition  is  made  of

the fact that smokers quit for different reasons.  Some smokers

become  sick  with  a  smoking  related  disease.   Upon  physician's

advise,  they  quit.   Their  increased  medical  expenditures  are

associated with their smoking related disease.  While these addi-

tional  expenditures  are  appropriately  allocatable  to  smoking,

they do not reflect their newly initiated category of "former-

smoker."  Other smokers have a revelation about the importance

of  health  on  their  own  and  their  family's  well-being  and  they

quit  as  a  means  to  an  end.   These  individuals  may  also  make

greater  use  of  discretionary  medical  expenditures,  but  these

additional medical expenditures arise from a change in the quit-

ter's  demand  for  health  services.   These  expenditures  are  not

allocatable to tobacco-usage either.  

In  addition  to  the  lack  of  a  complete  description  (or  of

the  major  dimensions  of)  an  individual's  smoking  history,

another important dimension about smoking history that is omit-

ted  from  most  of  the  extant  specifications  focuses  on  dosage.

If one is concerned with the economic benefits associated with

smoking  cessation  programs,  as  the  sponsors  of  this  research

are, one would want to be able to estimate the health benefits

that  accompany  a  reduction  in  some  of  the  populations'  daily

consumption  of  cigarettes,  and/or  the  health  benefits  associ-

ated  with  quitting  for  particularly  critical  periods  of  time,

such  as  during  the  period  that  a  woman  is  pregnant.   Since

dosage  is  not  integrated  into  the  current  "computational

devises",  any  benefits  derived  from  dosage  reduction  are  not

addressable with the existing smoking computational devises.  

Programs established to promote cessation in smoking behav-

ior reap benefits when they reduce the smoking attributable phys-

ical outcomes requiring medical services.  The economic evalua-

tion of these programs require being able to estimate the reduc-

tion in medical services caused by smoking, given smoking his-

tory.  To estimate such results is precisely the point of this

effort.  The theoretical "work" makes feasible estimates of the

physical consequences of smoking on a full (perhaps fuller is a

better  way  to  put  it)  statement  about  an  individual's  smoking

history.

Lewontin's  (2003)  second  category  for  theory  work  is  that

it "...help(s) us "understand" a process whose outcome has been

observed but whose dynamical details are not known from experi-

ment or observation."  For the topic at hand,  Lewontin is dis-

cussing science as understood by scientists.   There has been a

great deal of work of late understanding the dynamic process of

smoking induced cellular abnormality development (REF to latest

surgeons general report).  For example, exposure to a number of

things in everyday life, from sunlight to cigarette smoke, can

degrade DNA, but our bodies have developed mechanisms to miti-

gate this damage (Sarah Graham, Scientific American.com, News,

September  03,  2003).   Livneh  and  colleagues  (Journal  of  the

National Cancer Institute) studied the role of a repair enzyme

known  as  OGG1  in  preventing  lung  cancer.   OGG1  deletes  DNA

parts that have been damaged by oxygen radicals.  The theoreti-

cal  tobacco-exposure  distribution  derived  here  neither  makes,

nor is intended to make any contribution to the scientific under-

standing of the dynamic biologic process leading to disease at

the  heart  of  the  material  under  discussion.   Here,  the  theory

offered is merely a metaphor for the biological process.  

However,  the  diminishment  in  health,  the  diseases  and  the

deaths caused by smoking are the single most preventable public

health hazard.  The population of smokers is the group most in

need  of  understanding  the  true  consequences  of  smoking  behav-

ior.  Some argue that the negative effects of smoking are com-

mon knowledge and smoking is an expression of rational consumer

choice  (REF).   Yet  studies  show  that  few  have  good  estimates

about the details of these negative effects (REF).    It could

very well be that biological metaphors effectively transmit the

essence of the biological process and contribute toward convey-

ing  a  general  sense  of  understanding.   Computation  devises

based on believable/understandable metaphors are more likely to

lead  to  believable  results.   The  closer  the  metaphor's  struc-

ture is to the true underlying scientific process, the more cred-

ible the computational device, the more general "understanding"

can be derived from the computed knowledge.  In addition to the

work  of  understanding,  belief  serves  as  a  source  for  judge-

ments.   Judges,  juries,  legislatures,  public  health  bureau-

crats,  individuals,  everyone  of  us  needs  to  understand  the

health destructive consequences of smoking.  It is toward this

understanding  that  the  work  of  the  theory  derived  here  is

addressed.   

2.   A  description  of  the  tobacco-exposure

accumulation process of current cigarette-

smokers.

For current-smokers, the level of tobacco-exposure and the

time  rate  of  change  of  this  level  are  denoted  toxc[t]  and

toxc'[t],  respectively.   The  first  truth  about  the  postulated

tobacco-exposure accumulation process (alternatively, read equa-

tion  describing  the  process)  is  an  accounting  identity  that

describes the time rate of change of the level of tobacco-expo-

sure  in  the  body  of  a  current-smoker.   At  each  moment  t,  the

change  in  tobacco-exposure  level  is  simply  the  difference

between  the  tobacco-exposure  ingested  through  smoking

cigarettes  and  the  tobacco-exposure  purged  from  the  body

through the body's natural process to rid itself of foreign mate-

rial.  It is helpful to think of the moment of time denoted by

t as a day in the life of a current-smoker.  In such a temporal

framework,  the  ingestion  of  tobacco-exposure  is  given  by  the

product  of  the  exposure  per  pack  of  cigarettes,  denoted  by  ∆,

and the number of packs of cigarettes the current-smoker smokes

in a day, denoted by p.  Thus, at time t, tobacco-exposure inges-

tion is given by ∆ p.  

While  it  is  clear  that  neither  ∆,  nor  p  have  necessarily

been  constant  over  the  smoking  history  of  any  individual,  to

simplify  I  assume  that  both  the  exposure-per-pack,  ∆,  and  the

packs-per-day  smoked  have  been  constant  over  an  individual's

smoking history.  

At time t, the rate any current-smoker is able to purge him

or herself of tobacco-exposures is denoted  Ν c[t]. 

Given  this  notation  describing  ingestion  and  purging,  the

accounting  identity  describing  the  time  rate  of  change  of  the

accumulation of tobacco-exposures for a current-smoker at time

t is given by equation [2.1],

[2.1]  toxc'[t] = ∆ p - Ν c[t].

Factors  that  affect  the  purge  rate  constitute  the  second

half of the tobacco-exposure accumulation process.   The second

truth  (equation)  about  the  exposure  accumulation  process

describes the time rate of change of the tobacco-exposure purge

rate.   For  current  smokers,  the  time  rate  of  change  of  the

purge  rate  is  denoted  by  Ν c'[t]  .   I  assume  three  factors

effect  the  time  rate  of  change  of  the  purge  rate.   The  first

factor  is  aging.   Aging  causes  a  decline  in  all  the  body's

somatic  functioning;  aging  causes  the  body  to  be  less  effi-

cient.  More to the point, aging causes a decline in the body's

ability  to  purge  itself  of  exposure,  including  tobacco-expo-

sures.  Accordingly, I assume that the time rate of change in

the  purge  rate  declines  at  a  constant  rate  with  aging.  This

rate is denoted by Γ0. 

Second, I assume that the level of accumulated tobacco-expo-

sures in the body negatively affects the efficiency with which

the body expels tobacco-exposures.  Increasing tobacco-exposure

levels cause a decline in the purge rate.  A unit change in accu-

mulated  tobacco-exposures  causes  a  Γ1  decline  in  the  body's

purge rate.  

Third, I assume that individuals have different somatic reac-

tions to tobacco-exposures. This variability in reaction (think

allergic variability) is captured by incorporating a random pro-

cess into the description of the time rate of change of an indi-

vidual's purge rate.  

The  random  elements  incorporated  into  this  description  of

the change in the purge rate are instantaneous.  I assume that

this instantaneous randomness is described by a Wiener process,

which  is  a  standardized  Brownian  motion  process.   If  Σ c

denotes the standard deviation of a Brownian motion process at

time t, and if âΩ c denotes the time rate of change of a Wiener

process at time t,  Σ c âΩ c denotes the magnitude of the resolu-

tion of the instantaneous random shocks occurring at t.  Incorpo-

rating  these  three  effects  results  in  the  description  of  the

time rate of change in the current smoker's purge rate given by

equation [2.2],

[2.2]  Ν c'[t] = -Γ0 - Γ1 tox[t] + Σ c âΩ c, with Γ0>0, Γ1>0, and

Σ c>0.

There  are  two  initial  conditions  on  this  accumulation

system.  First, the body's tobacco-exposure level when smoking

is initiated, toxc[0], equals zero.  This analysis assumes away

second-hand  smoke  effects.   Second,  the  initial  purge  rate,

Ν c[0], is an unknown parameter of the problem and denoted Νc0.

These initial conditions are described by equation [2.3]

[2.3]  X0 = K toxc@0D
Νc@0D O=  K 0

Νc0
O.
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2.   A  description  of  the  tobacco-exposure

accumulation process of current cigarette-

smokers.

For current-smokers, the level of tobacco-exposure and the

time  rate  of  change  of  this  level  are  denoted  toxc[t]  and

toxc'[t],  respectively.   The  first  truth  about  the  postulated

tobacco-exposure accumulation process (alternatively, read equa-

tion  describing  the  process)  is  an  accounting  identity  that

describes the time rate of change of the level of tobacco-expo-

sure  in  the  body  of  a  current-smoker.   At  each  moment  t,  the

change  in  tobacco-exposure  level  is  simply  the  difference

between  the  tobacco-exposure  ingested  through  smoking

cigarettes  and  the  tobacco-exposure  purged  from  the  body

through the body's natural process to rid itself of foreign mate-

rial.  It is helpful to think of the moment of time denoted by

t as a day in the life of a current-smoker.  In such a temporal

framework,  the  ingestion  of  tobacco-exposure  is  given  by  the

product  of  the  exposure  per  pack  of  cigarettes,  denoted  by  ∆,

and the number of packs of cigarettes the current-smoker smokes

in a day, denoted by p.  Thus, at time t, tobacco-exposure inges-

tion is given by ∆ p.  

While  it  is  clear  that  neither  ∆,  nor  p  have  necessarily

been  constant  over  the  smoking  history  of  any  individual,  to

simplify  I  assume  that  both  the  exposure-per-pack,  ∆,  and  the

packs-per-day  smoked  have  been  constant  over  an  individual's

smoking history.  

At time t, the rate any current-smoker is able to purge him

or herself of tobacco-exposures is denoted  Ν c[t]. 

Given  this  notation  describing  ingestion  and  purging,  the

accounting  identity  describing  the  time  rate  of  change  of  the

accumulation of tobacco-exposures for a current-smoker at time

t is given by equation [2.1],

[2.1]  toxc'[t] = ∆ p - Ν c[t].

Factors  that  affect  the  purge  rate  constitute  the  second

half of the tobacco-exposure accumulation process.   The second

truth  (equation)  about  the  exposure  accumulation  process

describes the time rate of change of the tobacco-exposure purge

rate.   For  current  smokers,  the  time  rate  of  change  of  the

purge  rate  is  denoted  by  Ν c'[t]  .   I  assume  three  factors

effect  the  time  rate  of  change  of  the  purge  rate.   The  first

factor  is  aging.   Aging  causes  a  decline  in  all  the  body's

somatic  functioning;  aging  causes  the  body  to  be  less  effi-

cient.  More to the point, aging causes a decline in the body's

ability  to  purge  itself  of  exposure,  including  tobacco-expo-

sures.  Accordingly, I assume that the time rate of change in

the  purge  rate  declines  at  a  constant  rate  with  aging.  This

rate is denoted by Γ0. 

Second, I assume that the level of accumulated tobacco-expo-

sures in the body negatively affects the efficiency with which

the body expels tobacco-exposures.  Increasing tobacco-exposure

levels cause a decline in the purge rate.  A unit change in accu-

mulated  tobacco-exposures  causes  a  Γ1  decline  in  the  body's

purge rate.  

Third, I assume that individuals have different somatic reac-

tions to tobacco-exposures. This variability in reaction (think

allergic variability) is captured by incorporating a random pro-

cess into the description of the time rate of change of an indi-

vidual's purge rate.  

The  random  elements  incorporated  into  this  description  of

the change in the purge rate are instantaneous.  I assume that

this instantaneous randomness is described by a Wiener process,

which  is  a  standardized  Brownian  motion  process.   If  Σ c

denotes the standard deviation of a Brownian motion process at

time t, and if âΩ c denotes the time rate of change of a Wiener

process at time t,  Σ c âΩ c denotes the magnitude of the resolu-

tion of the instantaneous random shocks occurring at t.  Incorpo-

rating  these  three  effects  results  in  the  description  of  the

time rate of change in the current smoker's purge rate given by

equation [2.2],

[2.2]  Ν c'[t] = -Γ0 - Γ1 tox[t] + Σ c âΩ c, with Γ0>0, Γ1>0, and

Σ c>0.

There  are  two  initial  conditions  on  this  accumulation

system.  First, the body's tobacco-exposure level when smoking

is initiated, toxc[0], equals zero.  This analysis assumes away

second-hand  smoke  effects.   Second,  the  initial  purge  rate,

Ν c[0], is an unknown parameter of the problem and denoted Νc0.

These initial conditions are described by equation [2.3]

[2.3]  X0 = K toxc@0D
Νc@0D O=  K 0

Νc0
O.
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sures in the body negatively affects the efficiency with which
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levels cause a decline in the purge rate.  A unit change in accu-
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Third, I assume that individuals have different somatic reac-

tions to tobacco-exposures. This variability in reaction (think

allergic variability) is captured by incorporating a random pro-

cess into the description of the time rate of change of an indi-

vidual's purge rate.  

The  random  elements  incorporated  into  this  description  of

the change in the purge rate are instantaneous.  I assume that

this instantaneous randomness is described by a Wiener process,

which  is  a  standardized  Brownian  motion  process.   If  Σ c

denotes the standard deviation of a Brownian motion process at

time t, and if âΩ c denotes the time rate of change of a Wiener

process at time t,  Σ c âΩ c denotes the magnitude of the resolu-

tion of the instantaneous random shocks occurring at t.  Incorpo-

rating  these  three  effects  results  in  the  description  of  the

time rate of change in the current smoker's purge rate given by

equation [2.2],

[2.2]  Ν c'[t] = -Γ0 - Γ1 tox[t] + Σ c âΩ c, with Γ0>0, Γ1>0, and

Σ c>0.

There  are  two  initial  conditions  on  this  accumulation

system.  First, the body's tobacco-exposure level when smoking

is initiated, toxc[0], equals zero.  This analysis assumes away

second-hand  smoke  effects.   Second,  the  initial  purge  rate,

Ν c[0], is an unknown parameter of the problem and denoted Νc0.

These initial conditions are described by equation [2.3]

[2.3]  X0 = K toxc@0D
Νc@0D O=  K 0

Νc0
O.

� A Solution to the stochastic description of the current-
smokers tobacco accumulation process

Here, I present a solution for the dynamic stochastic differ-

ential equation system given by equations [2.1] through [2.3].

The solution yields knowledge about the distribution of tobacco-

exposures and purge rate implied by the tobacco-exposure accumu-

lation process described above.  I begin by representing equa-

tions [2.1]-[2.3] in matrix form.  For notational purposes, let

âX[t]  denote  a  vector  describing  the  first  derivatives  of  the

principal variables in the accumulation process of the current-

cigarette smoker.  Its first element is the time rate of change

of the body's tobacco-exposures; its second element is the time

rate of change of the purge rate,

[2.4]  âX[t] = 
toxc

¢ @tD
Νc
'@tD .

8 Appendix 1 TRDRPwriteup2009.nb



Here, I present a solution for the dynamic stochastic differ-

ential equation system given by equations [2.1] through [2.3].

The solution yields knowledge about the distribution of tobacco-

exposures and purge rate implied by the tobacco-exposure accumu-

lation process described above.  I begin by representing equa-

tions [2.1]-[2.3] in matrix form.  For notational purposes, let

âX[t]  denote  a  vector  describing  the  first  derivatives  of  the

principal variables in the accumulation process of the current-

cigarette smoker.  Its first element is the time rate of change

of the body's tobacco-exposures; its second element is the time

rate of change of the purge rate,

[2.4]  âX[t] = 
toxc

¢ @tD
Νc
'@tD .

Let A denote the matrix relating the derivatives of the vari-

ables to their magnitudes,

[2.5]  A = K 0 -1
-Γ1 0

O.
Let  H  denote  a  matrix  of  the  constants  in  the  description  of

the system,

[2.6]  H =  K p ∆

-Γ0
O.

Let  K  denote  the  matrix  of  constants  multiplying  the  Wiener

process for each equation in the system,

[2.7]  K =  K 0
Σc

O.
X0,  the  initial  values  of  the  system,  were  given  by  equation

[2.3] above.  And let vt indicate a Wiener process at time t. 

For a very different framework, Oksendal (2000) presented a

solution  to  a  problem  with  same  mathematical  structure  as  the

stochastic  differential  system  under  analysis  here.(Stochastic

Differential  Equations,  An  Introduction  with  Applications,  5th

Edition,Springer,pp.64-65).   If  the  exposure  accumulation  pro-

cess  unfolds  between  time  t0  and  time  t,  X[t],  the  magnitudes

of  the  accumulated  tobacco-exposures  and  the  purge  rate,  is

given by equation [2.8],

[2.8] X[t] = MatrixExp@A Ht - t0LD.X0 + 
MatrixExp@A H t - t0LD. MatrixExp@-A H t - t0LD.K.v@tD +

                     t

MatrixExp@A Ht - t0LD.Ù MatrixExp@-A sD.H âs +

                    t0
                  t

MatrixExp@A Ht - t0LD.Ù MatrixExp@-A sD .A .K .v@sD âs.

t0

Note  that  MatrixExp[<arg>]  evaluates  the  power  series  for  the

exponential  function  with  ordinary  powers  replaced  by  the

matrix  <arg>  (Wolfram,  1996,p.846).   Recognize  that

t0 = 0 and toxc@0D = 0,  the  closed  form  solutions  for  the  magni-

tude  of  tobacco-exposures  and  the  purge  rate,  respectively,

simplify to equations [2.9a] and [2.9b] (the Mathematica deriva-

tion  of  this  answer  is  contained  in  Appendix  1  to  this

appendix).  

               

[2.9a]toxc [t] =

 : 1
2 Γ1

ã-t Γ1 K-1 + ãt Γ1 O2

Γ0 + K-1 + ã2 t Γ1 O Γ1 Hp ∆ - Νc0L >
9-ISinhAt Γ1 E Σc HΩt - Ω0LM � I Γ1 M=

+

[2.9b]Νc[t] =

 : 1

Γ1
I-SinhAt Γ1 E Γ0 + Γ1 Ip ∆ + CoshAt Γ1 E H-p ∆ + Νc0LMM> + 

9CoshAt Γ1 E Σc HΩt - Ω0L=
The  instantaneous  random  white  noise  of  the  Wiener  pro-

cesses  integrates  over  time  to  a  Normally  distributed  random

variable with a heterogeneous variance.  In these expressions,

the  term   HΩt - Ω0L  represents  a  Wiener  process  between  time  0
and time t.  Wiener processes of duration t have expected val-

ues equal to zero, and variances equal to Σ2t, where Σ2 in this

analysis is given by Σc
2. 

For  expository  purposes,  I  have  separated  the  expressions

on  the  right-hand  side  (RHS)  of  equations  [2.9a]  and  [2.9b],

with  curled  brackets,  "{}".   The  first  term  (on  the  RHS)  of

each  of  these  expressions  is  the  expected  value  of  the  magni-

tude described at time t, the body's tobacco-exposures at time

t in equation [2.9a]; the body's purge rate at time t in equa-

tion  [2.9b].   Each  expected  value  describes  its  value  after  a

smoking  duration  of  length  t,  with  a  dosage  of  p  packs  of

cigarettes  smoked  per  day.   The  second  term  in  each  of  the

above expressions is a random variable, the difference between

an  individual's  true  tobacco-exposure  level  and  his  expected

tobacco-exposure level ([2.9a]; the difference between an indi-

vidual's true purge rate and his expected purge rate, given the

smoking history described by t and p.

 Given values for Γ1,  Γ0,  ∆, Νc0, and  Σc
2, the parameters

of  the  tobacco-exposure  accumulation  system,  tobacco-exposure

and  purge-rate  levels  are  linear  transformations  of  a  normal

random  variable.  Accordingly,  the  tobacco-exposure  and  purge

rate levels are normally distributed.  Since the variance of a

constant times a random variable is equal to the product of the

square of the constant and the variance of the random variable,

the  variance  of  the  tobacco-exposure  level,  denoted  by

Σ2
toxc@tD, is given by equation [2.10a],

[2.10a]  Σ2
toxc@tD= : t SinhBt Γ1 F2

Σc
2

Γ1
>,

and  the  variance  of  the  purge  rate,  denoted  by  Σ2
Ν' c@tD,  is

given by equation [2.10b],

[2.10b]  Σ2
Νc@tD = :t CoshAt Γ1 E2

Σc
2>.

Sinh[<arg>]  and  Cosh[<arg>]  are  respectively  the  hyperbolic

sine  and  hyperbolic  cosine  of  the  argument  <arg>  (Wolfram,

1996, p.731).  
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tude described at time t, the body's tobacco-exposures at time

t in equation [2.9a]; the body's purge rate at time t in equa-

tion  [2.9b].   Each  expected  value  describes  its  value  after  a

smoking  duration  of  length  t,  with  a  dosage  of  p  packs  of

cigarettes  smoked  per  day.   The  second  term  in  each  of  the

above expressions is a random variable, the difference between

an  individual's  true  tobacco-exposure  level  and  his  expected

tobacco-exposure level ([2.9a]; the difference between an indi-

vidual's true purge rate and his expected purge rate, given the

smoking history described by t and p.

 Given values for Γ1,  Γ0,  ∆, Νc0, and  Σc
2, the parameters

of  the  tobacco-exposure  accumulation  system,  tobacco-exposure

and  purge-rate  levels  are  linear  transformations  of  a  normal

random  variable.  Accordingly,  the  tobacco-exposure  and  purge

rate levels are normally distributed.  Since the variance of a

constant times a random variable is equal to the product of the

square of the constant and the variance of the random variable,

the  variance  of  the  tobacco-exposure  level,  denoted  by

Σ2
toxc@tD, is given by equation [2.10a],

[2.10a]  Σ2
toxc@tD= : t SinhBt Γ1 F2

Σc
2

Γ1
>,

and  the  variance  of  the  purge  rate,  denoted  by  Σ2
Ν' c@tD,  is

given by equation [2.10b],

[2.10b]  Σ2
Νc@tD = :t CoshAt Γ1 E2

Σc
2>.

Sinh[<arg>]  and  Cosh[<arg>]  are  respectively  the  hyperbolic

sine  and  hyperbolic  cosine  of  the  argument  <arg>  (Wolfram,

1996, p.731).  
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For a very different framework, Oksendal (2000) presented a

solution  to  a  problem  with  same  mathematical  structure  as  the

stochastic  differential  system  under  analysis  here.(Stochastic

Differential  Equations,  An  Introduction  with  Applications,  5th

Edition,Springer,pp.64-65).   If  the  exposure  accumulation  pro-

cess  unfolds  between  time  t0  and  time  t,  X[t],  the  magnitudes

of  the  accumulated  tobacco-exposures  and  the  purge  rate,  is

given by equation [2.8],

[2.8] X[t] = MatrixExp@A Ht - t0LD.X0 + 
MatrixExp@A H t - t0LD. MatrixExp@-A H t - t0LD.K.v@tD +

                     t

MatrixExp@A Ht - t0LD.Ù MatrixExp@-A sD.H âs +

                    t0
                  t

MatrixExp@A Ht - t0LD.Ù MatrixExp@-A sD .A .K .v@sD âs.

t0

Note  that  MatrixExp[<arg>]  evaluates  the  power  series  for  the

exponential  function  with  ordinary  powers  replaced  by  the

matrix  <arg>  (Wolfram,  1996,p.846).   Recognize  that

t0 = 0 and toxc@0D = 0,  the  closed  form  solutions  for  the  magni-

tude  of  tobacco-exposures  and  the  purge  rate,  respectively,

simplify to equations [2.9a] and [2.9b] (the Mathematica deriva-

tion  of  this  answer  is  contained  in  Appendix  1  to  this

appendix).  

               

[2.9a]toxc [t] =

 : 1
2 Γ1

ã-t Γ1 K-1 + ãt Γ1 O2

Γ0 + K-1 + ã2 t Γ1 O Γ1 Hp ∆ - Νc0L >
9-ISinhAt Γ1 E Σc HΩt - Ω0LM � I Γ1 M=

+

[2.9b]Νc[t] =

 : 1

Γ1
I-SinhAt Γ1 E Γ0 + Γ1 Ip ∆ + CoshAt Γ1 E H-p ∆ + Νc0LMM> + 

9CoshAt Γ1 E Σc HΩt - Ω0L=
The  instantaneous  random  white  noise  of  the  Wiener  pro-

cesses  integrates  over  time  to  a  Normally  distributed  random

variable with a heterogeneous variance.  In these expressions,

the  term   HΩt - Ω0L  represents  a  Wiener  process  between  time  0
and time t.  Wiener processes of duration t have expected val-

ues equal to zero, and variances equal to Σ2t, where Σ2 in this

analysis is given by Σc
2. 

For  expository  purposes,  I  have  separated  the  expressions

on  the  right-hand  side  (RHS)  of  equations  [2.9a]  and  [2.9b],

with  curled  brackets,  "{}".   The  first  term  (on  the  RHS)  of

each  of  these  expressions  is  the  expected  value  of  the  magni-

tude described at time t, the body's tobacco-exposures at time

t in equation [2.9a]; the body's purge rate at time t in equa-

tion  [2.9b].   Each  expected  value  describes  its  value  after  a

smoking  duration  of  length  t,  with  a  dosage  of  p  packs  of

cigarettes  smoked  per  day.   The  second  term  in  each  of  the

above expressions is a random variable, the difference between

an  individual's  true  tobacco-exposure  level  and  his  expected

tobacco-exposure level ([2.9a]; the difference between an indi-

vidual's true purge rate and his expected purge rate, given the

smoking history described by t and p.

 Given values for Γ1,  Γ0,  ∆, Νc0, and  Σc
2, the parameters

of  the  tobacco-exposure  accumulation  system,  tobacco-exposure

and  purge-rate  levels  are  linear  transformations  of  a  normal

random  variable.  Accordingly,  the  tobacco-exposure  and  purge

rate levels are normally distributed.  Since the variance of a

constant times a random variable is equal to the product of the

square of the constant and the variance of the random variable,

the  variance  of  the  tobacco-exposure  level,  denoted  by

Σ2
toxc@tD, is given by equation [2.10a],

[2.10a]  Σ2
toxc@tD= : t SinhBt Γ1 F2

Σc
2

Γ1
>,

and  the  variance  of  the  purge  rate,  denoted  by  Σ2
Ν' c@tD,  is

given by equation [2.10b],

[2.10b]  Σ2
Νc@tD = :t CoshAt Γ1 E2

Σc
2>.

Sinh[<arg>]  and  Cosh[<arg>]  are  respectively  the  hyperbolic

sine  and  hyperbolic  cosine  of  the  argument  <arg>  (Wolfram,

1996, p.731).  

3.  A description of the tobacco-exposure accumulation process

of former cigarette-smokers.

The  subscript  c  was  used  in  the  presentation  of  Section  2

above to denote the current smoker's model. Here, the subscript

f  will  be  used  to  denote  the  former-smokers  model.  Fundamen-

tally,  the  model  describing  a  former-smoker  is  based  on  the

same  mathematical  structure  as  the  model  describing  a  current

smoker.  However two variable values are different, one parame-

ter is allowed to be different, and the initial values of the

magnitudes of the system, an individual's level of tobacco-expo-

sures  and  his  purge  rate  are  different.   We  begin  with  the

changes  in  the  variable  values.   First,  time  for  the  former

smoker is a count of the time of abstention, not time of smok-

ing.  The variable u denotes the length of time of abstinence.

The time when a current-smoker quit is denoted by te (think e

for end). When a current-smoker transitions to a former-smoker,

t=te,  u=0.   For  a  former-smoker,  the  current-smoker's  model

applies for the period in which he smoked, that is, from t=0 to

t=te.   Take two individuals who are identical with the single

exception that one stopped smoking at time te, 0 < te < t.  The

value  t  for  the  current  smoker  equals  te  +  u  for  the  former

smoker.   The second variable value that changes in the former-

smoker's model is the dosage measure, the packs-per-day smoked.

During  the  period  of  abstention  zero  packs-per-day  are  con-

sumed.   Thus,  the  ingestion  described  in  the  time  rate  of

change  of  the  tobacco-exposure  accounting  identity  during  the

former-smoker's  abstention  period  has  a  value  of  zero.   Since

the  body's  purging  process  continues  to  operate,   similar  to

Section  2  above,  equation  [3.1],  describes  the  time  rate  of

change  in  the  tobacco-exposure  level  without  ingestion,  but

with a continuing purging process.  Recall, time, denoted by u,

measures the duration of the abstention period, 

[3.1]  toxf'[u] =  - Ν f[u].

The biological metaphor does not change when the individual

changes smoking status.  The time rate of change in the former-

smoker's  purge-rate,  Ν f'[u],  remains  affected  by  the  same

three factors that affect the time rate of change in the purge-

rate of a current-smoker.  However, I allow for the possibility

that the instantaneous random process during the period of absti-

nence can have a different standard deviation than the standard

deviation operating during the period of cigarette consumption.

Equation  [3.2]  specifies  the  time  rate  of  change  of  the  purge

rate of a former smoker, 

[3.2]  Ν f'[u] = -Γ0 - Γ1 toxf[u] + Σ f âΩu, with Γ0>0, Γ1>0, and

Σ f>0.

The  third  difference  between  the  current  and  former  smok-

er's models is the description of the values of the magnitudes

of the variables of the system when the system begins; the ini-

tial conditions of the system.  The initial condition for a cur-

rent smoker was the description of the stochastic differential

system  at  time  t  equal  to  zero.   The  initial  condition  for  a

former-smoker is the description of the stochastic differential

system at time t equal to te (u=0).  When a current-smoker tran-

sitions to a former smoker, his expected level of tobacco-expo-

sures and his expected purge-rate equals its value as a current

smoker, see equations [2.9a] and [2.9b] above.  Equation [3.3]

describes the initial conditions at the moment a current-smoker

transitions to a former smoker,

  

toxf@u = 0D : 1
2 Γ1

ã-te Γ1 K-1 + ãte Γ1 O2

Γ0 +

K-1 + ã2 te Γ1 O
Γ1 Hp ∆ - Νc0L > +

  

        :- 1

Γ1
ISinhAte Γ1 E Σc HΩt - Ω0LM>,

[3.3]  X0 =        =

                       Νf@u = 0D : 1

Γ1
I-SinhAte Γ1 E Γ0 +

Γ1 Ip ∆ + CoshAte Γ1 E H-p ∆ + Νc0LMM> +

   

9CoshAte Γ1 E Σc HΩt - Ω0L=.
 

 Similar to equation [2.4], the vector of first derivatives

of the variables of the system, evaluated at time u, is denoted

by âX[u].  It is given by equation [3.4],

[3.4]  âX[u] = 
toxf

¢ @uD
Νf
'@uD .  
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The  subscript  c  was  used  in  the  presentation  of  Section  2

above to denote the current smoker's model. Here, the subscript

f  will  be  used  to  denote  the  former-smokers  model.  Fundamen-

tally,  the  model  describing  a  former-smoker  is  based  on  the

same  mathematical  structure  as  the  model  describing  a  current

smoker.  However two variable values are different, one parame-

ter is allowed to be different, and the initial values of the

magnitudes of the system, an individual's level of tobacco-expo-

sures  and  his  purge  rate  are  different.   We  begin  with  the

changes  in  the  variable  values.   First,  time  for  the  former

smoker is a count of the time of abstention, not time of smok-

ing.  The variable u denotes the length of time of abstinence.

The time when a current-smoker quit is denoted by te (think e

for end). When a current-smoker transitions to a former-smoker,

t=te,  u=0.   For  a  former-smoker,  the  current-smoker's  model

applies for the period in which he smoked, that is, from t=0 to

t=te.   Take two individuals who are identical with the single

exception that one stopped smoking at time te, 0 < te < t.  The

value  t  for  the  current  smoker  equals  te  +  u  for  the  former

smoker.   The second variable value that changes in the former-

smoker's model is the dosage measure, the packs-per-day smoked.

During  the  period  of  abstention  zero  packs-per-day  are  con-

sumed.   Thus,  the  ingestion  described  in  the  time  rate  of

change  of  the  tobacco-exposure  accounting  identity  during  the

former-smoker's  abstention  period  has  a  value  of  zero.   Since

the  body's  purging  process  continues  to  operate,   similar  to

Section  2  above,  equation  [3.1],  describes  the  time  rate  of

change  in  the  tobacco-exposure  level  without  ingestion,  but

with a continuing purging process.  Recall, time, denoted by u,

measures the duration of the abstention period, 

[3.1]  toxf'[u] =  - Ν f[u].

The biological metaphor does not change when the individual

changes smoking status.  The time rate of change in the former-

smoker's  purge-rate,  Ν f'[u],  remains  affected  by  the  same

three factors that affect the time rate of change in the purge-

rate of a current-smoker.  However, I allow for the possibility

that the instantaneous random process during the period of absti-

nence can have a different standard deviation than the standard

deviation operating during the period of cigarette consumption.

Equation  [3.2]  specifies  the  time  rate  of  change  of  the  purge

rate of a former smoker, 

[3.2]  Ν f'[u] = -Γ0 - Γ1 toxf[u] + Σ f âΩu, with Γ0>0, Γ1>0, and

Σ f>0.

The  third  difference  between  the  current  and  former  smok-

er's models is the description of the values of the magnitudes

of the variables of the system when the system begins; the ini-

tial conditions of the system.  The initial condition for a cur-

rent smoker was the description of the stochastic differential

system  at  time  t  equal  to  zero.   The  initial  condition  for  a

former-smoker is the description of the stochastic differential

system at time t equal to te (u=0).  When a current-smoker tran-

sitions to a former smoker, his expected level of tobacco-expo-

sures and his expected purge-rate equals its value as a current

smoker, see equations [2.9a] and [2.9b] above.  Equation [3.3]

describes the initial conditions at the moment a current-smoker

transitions to a former smoker,

  

toxf@u = 0D : 1
2 Γ1

ã-te Γ1 K-1 + ãte Γ1 O2

Γ0 +

K-1 + ã2 te Γ1 O
Γ1 Hp ∆ - Νc0L > +

  

        :- 1

Γ1
ISinhAte Γ1 E Σc HΩt - Ω0LM>,

[3.3]  X0 =        =

                       Νf@u = 0D : 1

Γ1
I-SinhAte Γ1 E Γ0 +

Γ1 Ip ∆ + CoshAte Γ1 E H-p ∆ + Νc0LMM> +

   

9CoshAte Γ1 E Σc HΩt - Ω0L=.
 

 Similar to equation [2.4], the vector of first derivatives

of the variables of the system, evaluated at time u, is denoted

by âX[u].  It is given by equation [3.4],

[3.4]  âX[u] = 
toxf

¢ @uD
Νf
'@uD .  

Appendix 1 TRDRPwriteup2009.nb 13



The  subscript  c  was  used  in  the  presentation  of  Section  2

above to denote the current smoker's model. Here, the subscript
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with a continuing purging process.  Recall, time, denoted by u,

measures the duration of the abstention period, 

[3.1]  toxf'[u] =  - Ν f[u].

The biological metaphor does not change when the individual

changes smoking status.  The time rate of change in the former-

smoker's  purge-rate,  Ν f'[u],  remains  affected  by  the  same

three factors that affect the time rate of change in the purge-

rate of a current-smoker.  However, I allow for the possibility

that the instantaneous random process during the period of absti-

nence can have a different standard deviation than the standard

deviation operating during the period of cigarette consumption.

Equation  [3.2]  specifies  the  time  rate  of  change  of  the  purge

rate of a former smoker, 

[3.2]  Ν f'[u] = -Γ0 - Γ1 toxf[u] + Σ f âΩu, with Γ0>0, Γ1>0, and

Σ f>0.

The  third  difference  between  the  current  and  former  smok-

er's models is the description of the values of the magnitudes

of the variables of the system when the system begins; the ini-

tial conditions of the system.  The initial condition for a cur-

rent smoker was the description of the stochastic differential

system  at  time  t  equal  to  zero.   The  initial  condition  for  a

former-smoker is the description of the stochastic differential

system at time t equal to te (u=0).  When a current-smoker tran-

sitions to a former smoker, his expected level of tobacco-expo-

sures and his expected purge-rate equals its value as a current

smoker, see equations [2.9a] and [2.9b] above.  Equation [3.3]

describes the initial conditions at the moment a current-smoker

transitions to a former smoker,

  

toxf@u = 0D : 1
2 Γ1

ã-te Γ1 K-1 + ãte Γ1 O2

Γ0 +

K-1 + ã2 te Γ1 O
Γ1 Hp ∆ - Νc0L > +

  

        :- 1

Γ1
ISinhAte Γ1 E Σc HΩt - Ω0LM>,

[3.3]  X0 =        =

                       Νf@u = 0D : 1

Γ1
I-SinhAte Γ1 E Γ0 +

Γ1 Ip ∆ + CoshAte Γ1 E H-p ∆ + Νc0LMM> +

   

9CoshAte Γ1 E Σc HΩt - Ω0L=.
 

 Similar to equation [2.4], the vector of first derivatives

of the variables of the system, evaluated at time u, is denoted

by âX[u].  It is given by equation [3.4],

[3.4]  âX[u] = 
toxf

¢ @uD
Νf
'@uD .  

As in the description of a current-smoker, the matrix A is

the matrix of coefficients relating the derivatives of the vari-

ables to their magnitudes, the matrix H is the matrix of con-

stants  relating  the  derivatives  to  their  magnitudes.   These

matrices  are  the  same  in  both  systems.   The  matrix  K  is  the

matrix of constants multiplying the Wiener processes associated

with each of the two equations in the system.  The only differ-

ence  between  the  matrix  K  in  a  current-smoker's  model  and  the

matrix K in a former-smoker's model is the subscript on the stan-

dard  deviation  of  the  white  noise  process.   Equation  [3.5]  is

the  appropriate  representation  of  the  K  matrix  for  a  former-

smoker's model. 

[3.5]  K =  K 0
Σf

O.
 The essence of the solution to this system is again given

by  equation  [2.7].   Equations  [3.6a]  and  [3.6b]  present  the

simplified  closed  form  solutions  for  the  magnitude  of  the

tobacco-exposures  and  the  purge-rate,  respectively,  for  a

former-smoker.  The full Mathematica derivation of this answer

is contained in Appendix 2 to this appendix).  

               

[3.6a]   toxf[u,te] =  

: 1
2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L > +

: 1

Γ1
I-SinhAu Γ1 E Σf HΩu - Ω0LM> + 9CoshAu Γ1 E Εtoxc@teD=

+  

:- 1

Γ1
ISinhAu Γ1 E ΕΝc@teDM>.

[3.6b]    Νf[u,te] = 

: 1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM> +

 

9CoshAu Γ1 E Σf HΩu - Ω0L= +  

9- Γ1 SinhAu Γ1 E Εtoxc@teD=  +

9CoshAu Γ1 E ΕΝc@teD=.

Completely analogous to the solution equations in Section 2

above, I have separated the expressions on the RHS of equations

[3.6a] and [3.6b] with curled brackets, "{}".  The first expres-

sion  in  each  equation  is  the  expected  value  of  the  respective

magnitude, given estimated parameter values and values for how

long  the  former-smoker  smoked,  te,  and  how  long  a  respondent

abstained from smoking, u.  The second expressions are the ran-

dom  errors  resulting  from  the  Wiener  process  for  a  former-

smoker.  The third expressions are the consequence of the devia-

tion  between  the  true  tobacco-exposure  level  and  the  expected

tobacco-exposure level when the current-smoker transitions to a

former-smoker.   This  deviation  was  then  acted  upon  by  the

former-smoker's  stochastic  dynamic  tobacco-exposure  accumula-

tion  process.   The  fourth  (last)  expressions  are  the  conse-

quence  of  the  deviation  between  the  true  purge-rate  level  and

the  expected  purge-rate  level,  again  when  the  current-smoker

transitions to a former-smoker.  This deviation, again, was sub-

sequently acted upon by the former-smoker's stochastic dynamic

tobacco-exposure accumulation process.  

Given values for Γ1,  Γ0,  ∆, Νc0,  Σc
2, and Σf

2,  the parame-

ters of a former-smoker's tobacco-exposure accumulation system,

the tobacco-exposure and purge-rate levels are linear transforma-

tions  of  normal  random  variables.  Accordingly,  these  tobacco-

exposure  and  purge-rate  levels  are  normally  distributed.   The

variances  of  these  respective  levels  are  denoted  Σ2
toxf@u, teD,

and  Σ2
toxf@uD.  Again, for identification purposes, the right-

hand  terms  of  equations  [3.7a]  and  [3.7b],  expressions  for

these variances, are separated with curly brackets.  The first

term  on  the  RHS  of  equations  [3.7a]  and  [3.7b],  respectively,

is  the  variance  of  the  Wiener  process  acting  on  the  exposure

level  and  purge  rate,  respectively.   The  second  terms  are  the

variance induced by the initial difference between the true and

expected tobacco-exposure levels.  The third terms are the vari-

ance  induced  by  the  initial  difference  between  the  true  and

expected purge rate,

[3.7a] Σ2
toxf@u, teD=

     : u SinhBu Γ1 F2

Σf
2

Γ1
> + : 1

Γ1
Jte CoshAu Γ1 E2

SinhAte Γ1 E2
Σc
2N> + 

: 1
Γ1

Jte CoshAte Γ1 E2
SinhAu Γ1 E2

Σc
2N>,

[3.7b] Σ2
Νf@u, teD=  

      :u CoshAu Γ1 E2
Σf
2> + :te SinhAte Γ1 E2

SinhAu Γ1 E2
Σc
2> + 

        :te CoshAte Γ1 E2
CoshAu Γ1 E2

Σc
2>.
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 The essence of the solution to this system is again given

by  equation  [2.7].   Equations  [3.6a]  and  [3.6b]  present  the

simplified  closed  form  solutions  for  the  magnitude  of  the

tobacco-exposures  and  the  purge-rate,  respectively,  for  a

former-smoker.  The full Mathematica derivation of this answer

is contained in Appendix 2 to this appendix).  

               

[3.6a]   toxf[u,te] =  

: 1
2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L > +

: 1

Γ1
I-SinhAu Γ1 E Σf HΩu - Ω0LM> + 9CoshAu Γ1 E Εtoxc@teD=

+  

:- 1

Γ1
ISinhAu Γ1 E ΕΝc@teDM>.

[3.6b]    Νf[u,te] = 

: 1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM> +

 

9CoshAu Γ1 E Σf HΩu - Ω0L= +  

9- Γ1 SinhAu Γ1 E Εtoxc@teD=  +

9CoshAu Γ1 E ΕΝc@teD=.

Completely analogous to the solution equations in Section 2

above, I have separated the expressions on the RHS of equations

[3.6a] and [3.6b] with curled brackets, "{}".  The first expres-

sion  in  each  equation  is  the  expected  value  of  the  respective

magnitude, given estimated parameter values and values for how

long  the  former-smoker  smoked,  te,  and  how  long  a  respondent

abstained from smoking, u.  The second expressions are the ran-

dom  errors  resulting  from  the  Wiener  process  for  a  former-

smoker.  The third expressions are the consequence of the devia-

tion  between  the  true  tobacco-exposure  level  and  the  expected

tobacco-exposure level when the current-smoker transitions to a

former-smoker.   This  deviation  was  then  acted  upon  by  the

former-smoker's  stochastic  dynamic  tobacco-exposure  accumula-

tion  process.   The  fourth  (last)  expressions  are  the  conse-

quence  of  the  deviation  between  the  true  purge-rate  level  and

the  expected  purge-rate  level,  again  when  the  current-smoker

transitions to a former-smoker.  This deviation, again, was sub-

sequently acted upon by the former-smoker's stochastic dynamic

tobacco-exposure accumulation process.  

Given values for Γ1,  Γ0,  ∆, Νc0,  Σc
2, and Σf

2,  the parame-

ters of a former-smoker's tobacco-exposure accumulation system,

the tobacco-exposure and purge-rate levels are linear transforma-

tions  of  normal  random  variables.  Accordingly,  these  tobacco-

exposure  and  purge-rate  levels  are  normally  distributed.   The

variances  of  these  respective  levels  are  denoted  Σ2
toxf@u, teD,

and  Σ2
toxf@uD.  Again, for identification purposes, the right-

hand  terms  of  equations  [3.7a]  and  [3.7b],  expressions  for

these variances, are separated with curly brackets.  The first

term  on  the  RHS  of  equations  [3.7a]  and  [3.7b],  respectively,

is  the  variance  of  the  Wiener  process  acting  on  the  exposure

level  and  purge  rate,  respectively.   The  second  terms  are  the

variance induced by the initial difference between the true and

expected tobacco-exposure levels.  The third terms are the vari-

ance  induced  by  the  initial  difference  between  the  true  and

expected purge rate,

[3.7a] Σ2
toxf@u, teD=

     : u SinhBu Γ1 F2

Σf
2

Γ1
> + : 1

Γ1
Jte CoshAu Γ1 E2

SinhAte Γ1 E2
Σc
2N> + 

: 1
Γ1

Jte CoshAte Γ1 E2
SinhAu Γ1 E2

Σc
2N>,

[3.7b] Σ2
Νf@u, teD=  

      :u CoshAu Γ1 E2
Σf
2> + :te SinhAte Γ1 E2

SinhAu Γ1 E2
Σc
2> + 

        :te CoshAte Γ1 E2
CoshAu Γ1 E2

Σc
2>.
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abstained from smoking, u.  The second expressions are the ran-

dom  errors  resulting  from  the  Wiener  process  for  a  former-
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tion  between  the  true  tobacco-exposure  level  and  the  expected
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sequently acted upon by the former-smoker's stochastic dynamic

tobacco-exposure accumulation process.  

Given values for Γ1,  Γ0,  ∆, Νc0,  Σc
2, and Σf

2,  the parame-

ters of a former-smoker's tobacco-exposure accumulation system,

the tobacco-exposure and purge-rate levels are linear transforma-

tions  of  normal  random  variables.  Accordingly,  these  tobacco-

exposure  and  purge-rate  levels  are  normally  distributed.   The

variances  of  these  respective  levels  are  denoted  Σ2
toxf@u, teD,

and  Σ2
toxf@uD.  Again, for identification purposes, the right-

hand  terms  of  equations  [3.7a]  and  [3.7b],  expressions  for

these variances, are separated with curly brackets.  The first

term  on  the  RHS  of  equations  [3.7a]  and  [3.7b],  respectively,

is  the  variance  of  the  Wiener  process  acting  on  the  exposure

level  and  purge  rate,  respectively.   The  second  terms  are  the

variance induced by the initial difference between the true and

expected tobacco-exposure levels.  The third terms are the vari-

ance  induced  by  the  initial  difference  between  the  true  and

expected purge rate,

[3.7a] Σ2
toxf@u, teD=

     : u SinhBu Γ1 F2

Σf
2

Γ1
> + : 1

Γ1
Jte CoshAu Γ1 E2

SinhAte Γ1 E2
Σc
2N> + 

: 1
Γ1

Jte CoshAte Γ1 E2
SinhAu Γ1 E2

Σc
2N>,

[3.7b] Σ2
Νf@u, teD=  

      :u CoshAu Γ1 E2
Σf
2> + :te SinhAte Γ1 E2

SinhAu Γ1 E2
Σc
2> + 

        :te CoshAte Γ1 E2
CoshAu Γ1 E2

Σc
2>.

4.  Towards achieving a calculation device based on these theo-

retic tobacco-exposure distributions.
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4.  Towards achieving a calculation device based on these theo-

retic tobacco-exposure distributions.

Incorporating  the  theoretic  tobacco-exposure  distribution

into behavioral specifications

All of the empirical analyses to follow in this study  esti-

mate the effect of smoking on health and cost related outcomes.

The  derived  distribution  of  accumulated  tobacco-exposures  is

used as a tobacco-exposure index to portray a history of smok-

ing behavior.  In all of the analyses, the propensity for the

occurrence of the health or cost outcome under analysis is set

equal  to  parameter  weighted  measures  of  the  observation's  age

and  his  accumulated  tobacco-exposure  level.   The  coefficient

weighted expected level of tobacco-exposures are a RHS variable

in the specification of the expected propensity under analysis;

the  coefficient  weighted  difference  between  the  true  and

expected level of tobacco-exposures is, in effect, part of the

random error of the model. 

The feasibility of this plan requires (1) recognition that

at  least  a  part  of  the  random  error  term  in  each  model  has  a

normal distribution; and (2) estimates of the parameters of the

exposure  accumulation  model,  so  that  the  expected  exposure

level  and  its  variance  can  be  estimated  and  incorporated  into

the analyses.  In the next appendix to follow a survival model

is  proposed  that  has  the  appropriate  error  distributions.   I

call  it  a  Normally  Distributed  Survival  Model.   The  model  is

difficult  to  estimate  and  starting  values  are  quite  critical.
In Chapter Three I suggest methods that one can employ to achieve starting

values to use with estimating the proposed Probit Survival Model.  Chapter

Four presents a simple use of the Probit Survival Model.  The propensity to

die  is  estimated  for  two  classes  of  never-smokers,  those  who  have  had  no

higher education and those who have had some higher education.  Higher educa-

tion is being used as a proxy for social class, which is a proxy for access

to health care services.  Chapter Five presents estimates of the propensity

to  die  for  current  smokers  based  on  the  Probit  Survival  Model  specifica-

tion.   The  estimates  for  the  never-smokers  are  used  to  characterize  the

effect  of  age  and  health  care  access.   The  model  estimates  the  parameters

of a simplified version of the current-smokers model.  Chapter Six presents

estimates  of  the  propensity  to  die  for  former-smokers,  again  based  on  the

Probit Survival Model and again with estimates for the never-smokers charac-

terizing the effect of age and health care access.  The somewhat simplified

version  of  the  current  smokers  model  is  extended  to  represent  the  former

smokers. 

With the obtained tobacco-exposure parameter estimates, given an individ-

ual's  smoking  history,  it  is  possible  to  calculate  expected  levels  of

tobacco-exposures and standard deviations in those levels.  The next three

analyses  are  based  on  these  calculated  values.   In  Chapter  Seven,  I  esti-

mate  the  probability  of  being  currently  treated  for  a  class  of  smoking

related  diseases  (lung  cancer,  esophageal  cancer,  and  chronic  obstructive

pulmonary disease) that compared to never-smokers have a high relative risk

due to smoking.  In Chapter Eight the exercise is repeated for the class of

smoking  related  diseases  (all  of  the  remaining  smoking  related  diseases)

that have a relatively low relative risk due to smoking.  In Chapter Nine,

for a sample that is not currently treated for a smoking related disease I

estimate the effect of smoking on self-reported poor health status. 

These  analyses  allow  comparisons  between  a  wider  selection  of  smoking

histories than is usually made.  They also allow correction for sample selec-

tion due to death, obtaining a more accurate (and unbiased) estimate of the

relative  risk  of  current  treatment  statuses  induced  by  various  intensities

of  smoking  behavior.   The  set  of  analyses  also  allows  correction  for  the

additional  contributor  to  sample  selection,  current  treatment  status,  to

yield an unbiased estimate of the effect of smoking on the probability dis-

tribution of self-reported poor health status.

Chapter  Ten  estimates  a  medical  expenditure  model  for  people  who  are

not currently treated for a smoking related disease.  Again, smoking status

is  based  on  the  distribution  of  tobacco-exposures.   The  specification  is

able  to  differentiate  among  the  tobacco-exposure  effect  of  the  demand  for

medical services and any change in demand for medical services that accom-

pany a shift in smoking status from current to former.

Chapter Eleven uses all of the derived models to estimate the expected

deaths, the distribution of expected smoking related disease treatment, and

the distribution of the self-reported health status of California's popula-

tion  for  a  considerable  period  into  the  future.   Chapter  Eleven  estimates

the smoking prevalence rates and quit rates that California might have had,

if its Tobacco Prevention Program had not existed, and Chapter Twelve com-

pares  the  simulations  performed  on  California's  population  to  the  simula-

tions  performed  on  California's  population  without  its  tobacco  prevention

program  to  estimate  the  economic  and  physical  benefits  from  the  program

over the decade of the nineteen nineties.  
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All of the empirical analyses to follow in this study  esti-

mate the effect of smoking on health and cost related outcomes.

The  derived  distribution  of  accumulated  tobacco-exposures  is

used as a tobacco-exposure index to portray a history of smok-

ing behavior.  In all of the analyses, the propensity for the

occurrence of the health or cost outcome under analysis is set

equal  to  parameter  weighted  measures  of  the  observation's  age

and  his  accumulated  tobacco-exposure  level.   The  coefficient

weighted expected level of tobacco-exposures are a RHS variable

in the specification of the expected propensity under analysis;

the  coefficient  weighted  difference  between  the  true  and

expected level of tobacco-exposures is, in effect, part of the

random error of the model. 

The feasibility of this plan requires (1) recognition that

at  least  a  part  of  the  random  error  term  in  each  model  has  a

normal distribution; and (2) estimates of the parameters of the

exposure  accumulation  model,  so  that  the  expected  exposure

level  and  its  variance  can  be  estimated  and  incorporated  into

the analyses.  In the next appendix to follow a survival model

is  proposed  that  has  the  appropriate  error  distributions.   I

call  it  a  Normally  Distributed  Survival  Model.   The  model  is

difficult  to  estimate  and  starting  values  are  quite  critical.
In Chapter Three I suggest methods that one can employ to achieve starting

values to use with estimating the proposed Probit Survival Model.  Chapter

Four presents a simple use of the Probit Survival Model.  The propensity to

die  is  estimated  for  two  classes  of  never-smokers,  those  who  have  had  no

higher education and those who have had some higher education.  Higher educa-

tion is being used as a proxy for social class, which is a proxy for access

to health care services.  Chapter Five presents estimates of the propensity

to  die  for  current  smokers  based  on  the  Probit  Survival  Model  specifica-

tion.   The  estimates  for  the  never-smokers  are  used  to  characterize  the

effect  of  age  and  health  care  access.   The  model  estimates  the  parameters

of a simplified version of the current-smokers model.  Chapter Six presents

estimates  of  the  propensity  to  die  for  former-smokers,  again  based  on  the

Probit Survival Model and again with estimates for the never-smokers charac-

terizing the effect of age and health care access.  The somewhat simplified

version  of  the  current  smokers  model  is  extended  to  represent  the  former

smokers. 

With the obtained tobacco-exposure parameter estimates, given an individ-

ual's  smoking  history,  it  is  possible  to  calculate  expected  levels  of

tobacco-exposures and standard deviations in those levels.  The next three

analyses  are  based  on  these  calculated  values.   In  Chapter  Seven,  I  esti-

mate  the  probability  of  being  currently  treated  for  a  class  of  smoking

related  diseases  (lung  cancer,  esophageal  cancer,  and  chronic  obstructive

pulmonary disease) that compared to never-smokers have a high relative risk

due to smoking.  In Chapter Eight the exercise is repeated for the class of

smoking  related  diseases  (all  of  the  remaining  smoking  related  diseases)

that have a relatively low relative risk due to smoking.  In Chapter Nine,

for a sample that is not currently treated for a smoking related disease I

estimate the effect of smoking on self-reported poor health status. 

These  analyses  allow  comparisons  between  a  wider  selection  of  smoking

histories than is usually made.  They also allow correction for sample selec-

tion due to death, obtaining a more accurate (and unbiased) estimate of the

relative  risk  of  current  treatment  statuses  induced  by  various  intensities

of  smoking  behavior.   The  set  of  analyses  also  allows  correction  for  the

additional  contributor  to  sample  selection,  current  treatment  status,  to

yield an unbiased estimate of the effect of smoking on the probability dis-

tribution of self-reported poor health status.

Chapter  Ten  estimates  a  medical  expenditure  model  for  people  who  are

not currently treated for a smoking related disease.  Again, smoking status

is  based  on  the  distribution  of  tobacco-exposures.   The  specification  is

able  to  differentiate  among  the  tobacco-exposure  effect  of  the  demand  for

medical services and any change in demand for medical services that accom-

pany a shift in smoking status from current to former.

Chapter Eleven uses all of the derived models to estimate the expected

deaths, the distribution of expected smoking related disease treatment, and

the distribution of the self-reported health status of California's popula-

tion  for  a  considerable  period  into  the  future.   Chapter  Eleven  estimates

the smoking prevalence rates and quit rates that California might have had,

if its Tobacco Prevention Program had not existed, and Chapter Twelve com-

pares  the  simulations  performed  on  California's  population  to  the  simula-

tions  performed  on  California's  population  without  its  tobacco  prevention

program  to  estimate  the  economic  and  physical  benefits  from  the  program

over the decade of the nineteen nineties.  

Appendix  1.1:  Solution  for  Current

Smoker

The  model  to  be  solved,   representing  the  generalized

tobacco-exposure  accumulation  model  for  the   current-smoker

is as follows:

toxc'[t] = ∆ p - Ν c[t],

Ν c'[t] = -Γ0 - Γ1 tox[t] + Σ c âΩ t,

where:  tox[t]=  accumulated  level  of  tobacco  originating

exposures in the body;

Ν c[t] = body purge rate;

Γ0=  drift  rate  in  the  body's  purging  ability  due  to

aging;

Γ1 = drift rate in the body's purging ability due to expo-

sure accumulation;

Σ c= standard deviation of the Wiener stochastic process;

âΩ t= Wiener process at time t;

 ∆ = density of exposures per pack of cigarettes;

 p = packs of cigarettes smoked per day.

 

 The vector of first derivatives evaluated at time t is

âX[t],
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Appendix  1.1:  Solution  for  Current

Smoker

The  model  to  be  solved,   representing  the  generalized

tobacco-exposure  accumulation  model  for  the   current-smoker

is as follows:

toxc'[t] = ∆ p - Ν c[t],

Ν c'[t] = -Γ0 - Γ1 tox[t] + Σ c âΩ t,

where:  tox[t]=  accumulated  level  of  tobacco  originating

exposures in the body;

Ν c[t] = body purge rate;

Γ0=  drift  rate  in  the  body's  purging  ability  due  to

aging;

Γ1 = drift rate in the body's purging ability due to expo-

sure accumulation;

Σ c= standard deviation of the Wiener stochastic process;

âΩ t= Wiener process at time t;

 ∆ = density of exposures per pack of cigarettes;

 p = packs of cigarettes smoked per day.

 

 The vector of first derivatives evaluated at time t is

âX[t],

âX@tD = 88toxc'@tD<, 8Νc'@tD<<
88toxc¢@tD<, 8Νc

¢@tD<<
MatrixForm@%D
K toxc¢@tD

Νc
¢@tD O

A  is  the  matrix  relating  the  derivatives  of  the  variables

in the model to the variables in the model,

A = 880, -1<, 8-Γ1, 0<<
880, -1<, 8-Γ1, 0<<
MatrixForm@%D
K 0 -1

-Γ1 0
O

H is a matrix of constants,
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H is a matrix of constants,

H = 88∆ p<, 8-Γ0<<
88p ∆<, 8-Γ0<<

K is a matrix of constants multiplying the Wiener processes

associated with each equation,

K = 880<, 8Σc <<
880<, 8Σc<<

X0 denotes the matrix of starting values,

X0 = 88toxc0<, 8Νc0<<
88toxc0<, 8Νc0<<

W  indicates  the  Wiener  process  (Standardized  Brownian

Motion)

W = 88Ω<<
88Ω<<

The next four operations are the four parts of the solution.

MatrixExp@A Ht - t0LD.X0
::1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L toxc0 -

ã- Γ1 Ht-t0L K-1 + ã2 Γ1 Ht-t0LO Νc0

2 Γ1
>,

:-
1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L Γ1 toxc0 +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Νc0>>
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MatrixExp@A H t - t0LD. MatrixExp@-A H t - t0LD.K.W
:80<,

: -
1

4
ã-2 Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L 2

+
1

4
ã-2 Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L 2

Ω Σc>>
MatrixExp@A Ht - t0LD.
Integrate@MatrixExp@-A sD. H , 8s, t0, t<D

::-
1

2 Γ1
ã- Γ1 Ht-t0L

-1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

1

Γ1
J-SinhBt Γ1 F + SinhB Γ1 t0FN Γ0 +

1

Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 >,
:1
2

ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

I-SinhAt Γ1 E + SinhA Γ1 t0EM Γ0

Γ1
-

1

Γ1
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 >>
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MatrixExp@A Ht - t0LD.
Integrate@MatrixExp@-A sD . A . K . W, 8s, t0, t<D

::-
1

2 Γ1
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L

Ω J-CoshBt Γ1 F + CoshB Γ1 t0FN Σc +

1

2 Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Ω

J-SinhBt Γ1 F + SinhB Γ1 t0FN Σc >,
:1
2

ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Ω J-CoshBt Γ1 F + CoshB Γ1 t0FN Σc -

1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L Ω

J-SinhBt Γ1 F + SinhB Γ1 t0FN Σc>>
The solution of the magnitudes is the sum of the four parts

given directly above,

X@tD = %9 + %10 + %11 + %12

::1
2

ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L toxc0 -
1

2 Γ1

ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

1

Γ1
J-SinhBt Γ1 F + SinhB Γ1 t0FN Γ0 +

1

Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 -

ã- Γ1 Ht-t0L K-1 + ã2 Γ1 Ht-t0LO Νc0

2 Γ1
-

1

2 Γ1
ã- Γ1 Ht-t0L

-1 + ã2 Γ1 Ht-t0L Ω J-CoshBt Γ1 F + CoshB Γ1 t0FN Σc +

1

2 Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Ω

J-SinhBt Γ1 F + SinhB Γ1 t0FN Σc >,
: +
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:-
1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L Γ1 toxc0 +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

I-SinhAt Γ1 E + SinhA Γ1 t0EM Γ0

Γ1
-

1

Γ1
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Νc0 +

-
1

4
ã-2 Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L 2

+

1

4
ã-2 Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L 2

Ω Σc +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Ω J-CoshBt Γ1 F + CoshB Γ1 t0FN Σc -

1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L Ω

J-SinhBt Γ1 F + SinhB Γ1 t0FN Σc>>
At time t, Ω would denote the difference between the Wiener

process at t and the Wiener process at 0

%13 �. Ω ® HWt - W0L
::1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L toxc0 -

1

2 Γ1

ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

1

Γ1
J-SinhBt Γ1 F + SinhB Γ1 t0FN Γ0 +

1

Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 -

ã- Γ1 Ht-t0L K-1 + ã2 Γ1 Ht-t0LO Νc0

2 Γ1
-

+
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1

2 Γ1
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L

J-CoshBt Γ1 F + CoshB Γ1 t0FN Σc H-88Ω<<0 + 88Ω<<tL +

1

2 Γ1
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L J-SinhBt Γ1 F + SinhB Γ1 t0FN

Σc H-88Ω<<0 + 88Ω<<tL >,
:-

1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L Γ1 toxc0 +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L p ∆ JCoshBt Γ1 F - CoshB Γ1 t0FN +

I-SinhAt Γ1 E + SinhA Γ1 t0EM Γ0

Γ1
-

1

Γ1
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L SinhB1

2
Γ1 Ht - t0LF

p Γ1 ∆ CoshB1
2

Γ1 Ht + t0LF - SinhB1
2

Γ1 Ht + t0LF Γ0 +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L Νc0 +

-
1

4
ã-2 Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L 2

+

1

4
ã-2 Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L 2

Σc H-88Ω<<0 + 88Ω<<tL +

1

2
ã- Γ1 Ht-t0L 1 + ã2 Γ1 Ht-t0L J-CoshBt Γ1 F + CoshB Γ1 t0FN

Σc H-88Ω<<0 + 88Ω<<tL -
1

2
ã- Γ1 Ht-t0L -1 + ã2 Γ1 Ht-t0L

J-SinhBt Γ1 F + SinhB Γ1 t0FN Σc H-88Ω<<0 + 88Ω<<tL>>
Setting  the  starting  values  for  toxc  and  t  equal  to  their

known values, the solution equations become:
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88toxc@tD<, 8Νc@tD<< = %14 �. 8toxc0 ® 0, t0 ® 0<

:: 1

Γ1
ã-t Γ1 1 + ã2 t Γ1 SinhBt Γ1

2
F

p Γ1 ∆ CoshBt Γ1

2
F - SinhBt Γ1

2
F Γ0 -

1

2 Γ1

ã-t Γ1 -1 + ã2 t Γ1 p ∆ J-1 + CoshBt Γ1 FN -
SinhAt Γ1 E Γ0

Γ1
-

ã-t Γ1 K-1 + ã2 t Γ1 O Νc0

2 Γ1
-

1

2 Γ1

ã-t Γ1 -1 + ã2 t Γ1 J1 - CoshBt Γ1 FN Σc H-88Ω<<0 + 88Ω<<tL -

1

2 Γ1
ã-t Γ1 1 + ã2 t Γ1 SinhBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL >,

:-
1

Γ1
ã-t Γ1 -1 + ã2 t Γ1 SinhBt Γ1

2
F

p Γ1 ∆ CoshBt Γ1

2
F - SinhBt Γ1

2
F Γ0 +

1

2
ã-t Γ1 1 + ã2 t Γ1 p ∆ J-1 + CoshBt Γ1 FN -

SinhAt Γ1 E Γ0

Γ1
+

1

2
ã-t Γ1 1 + ã2 t Γ1 Νc0 +

-
1

4
ã-2 t Γ1 -1 + ã2 t Γ1

2

+
1

4
ã-2 t Γ1 1 + ã2 t Γ1

2

Σc H-88Ω<<0 + 88Ω<<tL +

1

2
ã-t Γ1 1 + ã2 t Γ1 J1 - CoshBt Γ1 FN Σc H-88Ω<<0 + 88Ω<<tL +

1

2
ã-t Γ1 -1 + ã2 t Γ1 SinhBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL>>
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FullSimplify@%15D
:: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 +

-1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0 + Σc H88Ω<<0 - 88Ω<<tLL >,
: 1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1

Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0 + Σc H-88Ω<<0 + 88Ω<<tLLNN>>
Note  that  in  the  expression  for  toxc @tDthe  Wiener  pro-

cess is going backward and needs to be changed.  First iden-

tify  the  coefficient  on  the  Wiener  process.   What  follows

is the expected value of toxc@tD,
%16@@1DD �. H88Ω<<0 - 88Ω<<tL ® 0

: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L >
The difference between the whole expression for toxc@tD and
the  expected  value  of  toxc@tD  is  the  random  error  in  the

expression for toxc@tD
%16@@1DD - %17

:-
1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L +

1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 +

-1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0 + Σc H88Ω<<0 - 88Ω<<tLL >

FullSimplify@%D

:SinhAt Γ1 E Σc H88Ω<<0 - 88Ω<<tL
Γ1

>
Multiply  this  term  by  -1  and   change  the  signs  in  the

Wiener processes.  
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-1 %19

:-
SinhAt Γ1 E Σc H88Ω<<0 - 88Ω<<tL

Γ1
>

:-
SinhAt Γ1 E Σc H-88Ω<<0 + 88Ω<<tL

Γ1
>

:-
SinhAt Γ1 E Σc H-88Ω<<0 + 88Ω<<tL

Γ1
>

Accordingly,  (  from  %17  and  %19),  the  following  is  the

correct statement for toxc@tD, Hsee Out@26D belowL,
: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 +

-1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L > +

:-
SinhBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL

Γ1
>

: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L -

SinhAt Γ1 E Σc H-88Ω<<0 + 88Ω<<tL
Γ1

>
Returning to the expression for Νc@tD, its expected value is:

%16@@2DD �. H88Ω<<t - 88Ω<<0L ® 0

: 1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN>

The  difference  between  the  whole  expression  for  Νc@tD  and

the expected value of Νc@tD is the random error in the expres-
sion for Νc@tD,
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%16@@2DD - %23

:-
1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN +

1

Γ1
J-SinhBt Γ1 F Γ0 +

Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0 + Σc H-88Ω<<0 + 88Ω<<tLLNN>
FullSimplify@%D
:CoshBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL>

The  expression  for  the  solution  to  the  problem  is  as

follows:

8%22, %23 + %25<
:: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L -

SinhAt Γ1 E Σc H-88Ω<<0 + 88Ω<<tL
Γ1

>,
: 1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN +

CoshBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL>>
We can express this solution as the sum of its expected

values and its error.  The expected value results from set-

ting  the  random  error  equal  to  zero.   Taking  the  result

from  above,  (where  in  the  statement  to  follow  the  first

parts are the expected values and the second parts are the

error terms,
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:: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 +

-1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L +

Εtoxc@tD>, : 1

Γ1
J-SinhBt Γ1 F Γ0 +

Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN + ΕΝc
@tD>>

— General::spell1 : Possible spelling error: new symbol

name "toxc" is similar to existing symbol "tox". More…

:: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L +

Εtoxc@tD>,
: 1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN +

ΕΝc@tD>>
The random errors are given by

::-
SinhBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL

Γ1
>,

:CoshBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL>>

::-
SinhAt Γ1 E Σc H-88Ω<<0 + 88Ω<<tL

Γ1
>,

:CoshBt Γ1 F Σc H-88Ω<<0 + 88Ω<<tL>>

The  following  expressions  (Out[27]  evaluated  at  t->te

describe the starting value for toxf[0], Νf[0], in equation

[1.14]
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:: 1

2 Γ1
ã-t Γ1 J-1 + ãt Γ1 N2 Γ0 + J-1 + ã2 t Γ1 N Γ1 Hp ∆ - Νc0L +

Εtoxc@tD>,

: 1

Γ1
I-SinhAt Γ1 E Γ0 + Γ1 Ip ∆ + CoshAt Γ1 E H-p ∆ + Νc0LMM +

ΕΝc
@tD>>

:: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 + -1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L +

Εtoxc@tD>,
: 1

Γ1
J-SinhBt Γ1 F Γ0 + Γ1 Jp ∆ + CoshBt Γ1 F H-p ∆ + Νc0LNN +

ΕΝc@tD>>
The  variances  of  toxc@tD and Νc@tD are  the  variance  of  these

error terms.  This expression is the variance squared times

t.  

:: -
1

Γ1
ISinhAt Γ1 E Σc Sqrt@tDM

2

>,

: I CoshAt Γ1 E Σc Sqrt@tDM2>>

::t SinhAt Γ1 E2 Σc
2

Γ1
>, :t CoshBt Γ1 F2 Σc

2>>

This  is  a  check  to  insure  that  the  expected  value  of
toxc0 = 0.

: 1

2 Γ1
ã-t Γ1 -1 + ãt Γ1

2

Γ0 +

-1 + ã2 t Γ1 Γ1 Hp ∆ - Νc0L > �. t ® 0

80<
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Appendix 1.2:Solution for a Former-Smoker

The  model  to  be  solved  represents  the  generalized  tobacco-

exposure  accumulation  model  for  a  former  smoker  is  as  fol-

lows:

toxf'[u] =  - Ν f[u],

Ν f'[u] = -Γ0 - Γ1 tox[u] + Σ fâΩ u,

where: 

Ν f[u]  =  body  purge  rate  for  former  smokers  at  time  u

into abstinence;

toxf[u]=  the  accumulated  level  of  tobacco  originating

exposures in the body at time u;

Γ0=  drift  rate  in  the  body's  purging  ability  due  to

aging;

Γ1 = drift rate in the body's purging ability due to expo-

sure accumulation;

Σ f= standard deviation of the Wiener stochastic process;

âΩ u= Wiener process at time u;

∆ = density of exposures per pack;

p = packs of cigarettes smoked per day.

 

  The  vector  of  first  derivatives  evaluated  at  time  u

is âX[u]

âX@uD = 88toxf' @uD<, 8Νf' @uD<<
88toxf¢ @uD<, 8Νf

¢ @uD<<
MatrixForm@%D
toxf

¢ @uD
Νf

¢ @uD
A is the matrix relating the variable to its derivative.
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A = 880, -1<, 8-Γ1, 0<<
880, -1<, 8-Γ1, 0<<
MatrixForm@%D
K 0 -1

-Γ1 0
O

H is a matrix of constants relating the derivatives to the

magnitudes of the variables.magnitudes

H = 88 0<, 8-Γ0<<
880<, 8-Γ0<<

K is a matrix of constants multiplying the Wiener processes

associated with each equation.

K = 880<, 8Σf <<
880<, 8Σf<<

X0 denotes the matrix of starting values.

X0 = 88toxf0<, 8Νf0<<
88toxf0<, 8Νf0<<

W indicates the Wiener process (Brownian Motion).

W = 88Ω<<
88Ω<<

The next four operations are the four parts of the solution
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MatrixExp@A Hu - u0LD.X0

:: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L toxf0 +

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Νf0>,
: 1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 toxf0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L Νf0>>

MatrixExp@A H u - u0LD. MatrixExp@-A H u - u0LD.K.W

:: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

+

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-
ã- Γ1 Hu-u0L
2 Γ1

+
ã Γ1 Hu-u0L
2 Γ1

Ω Σf>,

: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L 2

+

-
ã- Γ1 Hu-u0L
2 Γ1

+
ã Γ1 Hu-u0L
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Ω Σf>>

Appendix 1 TRDRPwriteup2009.nb 33



MatrixExp@A Hu - u0LD.
Integrate@MatrixExp@-A sD. H , 8s, u0, u<D

::-
1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0>, :-
1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Γ0>>
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MatrixExp@A Hu - u0LD.
Integrate@MatrixExp@-A sD . A . K . W, 8s, u0, u<D

:: -
1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Ω Σf +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Ω Σf>,
: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L -

1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O Ω Σf +

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Ω Σf>>

The solution of the magnitudes is the sum of the four parts

given directly above

X@tD = %9 + %10 + %11 + %12

:: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L toxf0 -

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

Γ0 -
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ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0 +

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Νf0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L ã- Γ1 Hu-u0L

2 Γ1
-

ã Γ1 Hu-u0L
2 Γ1

+
1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-
ã- Γ1 Hu-u0L
2 Γ1

+
ã Γ1 Hu-u0L
2 Γ1

Ω Σf +

-
1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Ω Σf +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Ω Σf>,
: -
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: 1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 toxf0 -

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Γ0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L Νf0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-
1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O

Ω Σf +
1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L 2

+

-
ã- Γ1 Hu-u0L
2 Γ1

+
ã Γ1 Hu-u0L
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Ω Σf +

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Ω Σf>>

At time u,  Ω denotes the difference between the Wiener pro-

cess at u and the Wiener process at u=0
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At time u,  Ω denotes the difference between the Wiener pro-

cess at u and the Wiener process at u=0

%13 �. Ω ® HWu - W0L

:: 1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L toxf0 -

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0 +

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Νf0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

+

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L -

ã- Γ1 Hu-u0L
2 Γ1

+

ã Γ1 Hu-u0L
2 Γ1

Σf H-88Ω<<0 + 88Ω<<uL +

-
1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O

Σf +
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ã- Γ1 Hu-u0L
2 Γ1

-
ã Γ1 Hu-u0L
2 Γ1

Σf H-88Ω<<0 + 88Ω<<uL +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Σf H-88Ω<<0 + 88Ω<<uL>,
: 1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 toxf0 -

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

Γ0 -

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

-

ã- Γ1 u0 K1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Γ0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L Νf0 +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L

-
1

2
ã-u Γ1 K1 + ã2 u Γ1 O +

1

2
ã- Γ1 u0 K1 + ã2 Γ1 u0O

Σf H-88Ω<<0 + 88Ω<<uL +

1

2
ã- Γ1 Hu-u0L +

1

2
ã Γ1 Hu-u0L 2

+

Appendix 1 TRDRPwriteup2009.nb 39



-
ã- Γ1 Hu-u0L
2 Γ1

+
ã Γ1 Hu-u0L
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1 Σf H-88Ω<<0 + 88Ω<<uL +

-

ã-u Γ1 K-1 + ã2 u Γ1 O
2 Γ1

+

ã- Γ1 u0 K-1 + ã2 Γ1 u0O
2 Γ1

1

2
ã- Γ1 Hu-u0L Γ1 -

1

2
ã Γ1 Hu-u0L Γ1

Σf H-88Ω<<0 + 88Ω<<uL>>
%14 �. 8u0 ® 0<

:: 1

2
ã-u Γ1 +

ãu Γ1

2
toxf0 -

1

2
ã-u Γ1 +

ãu Γ1

2
-
1

Γ1
+

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

Γ0 -

ã-u Γ1 K-1 + ã2 u Γ1 O ã-u Γ1

2 Γ1
- ãu Γ1

2 Γ1
Γ0

2 Γ1
+

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1
Νf0 +

1

2
ã-u Γ1 +

ãu Γ1

2

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1
+

1

2
ã-u Γ1 +

ãu Γ1

2
-

ã-u Γ1

2 Γ1
+

ãu Γ1

2 Γ1
Σf

+

Σf -
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H-88Ω<<0 + 88Ω<<uL + 1 -
1

2
ã-u Γ1 K1 + ã2 u Γ1 O

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1
Σf H-88Ω<<0 + 88Ω<<uL -

1

2 Γ1
ã-u Γ1 1

2
ã-u Γ1 +

ãu Γ1

2

K-1 + ã2 u Γ1 O Σf H-88Ω<<0 + 88Ω<<uL >,
: 1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1 toxf0 -

-
1

Γ1
+

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1 Γ0 -

ã-u Γ1 K 1
2

ã-u Γ1 + ãu Γ1

2
O K-1 + ã2 u Γ1 O Γ0

2 Γ1
+

1

2
ã-u Γ1 +

ãu Γ1

2
Νf0 +

1

2
ã-u Γ1 +

ãu Γ1

2

1 -
1

2
ã-u Γ1 K1 + ã2 u Γ1 O Σf H-88Ω<<0 + 88Ω<<uL +

1

2
ã-u Γ1 +

ãu Γ1

2

2

+ -
ã-u Γ1

2 Γ1
+

ãu Γ1

2 Γ1

1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1

Σf -
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Σf H-88Ω<<0 + 88Ω<<uL -
1

2 Γ1
ã-u Γ1

K-1 + ã2 u Γ1 O 1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1

Σf H-88Ω<<0 + 88Ω<<uL >>
Set the starting values for toxf[u,te] and Νf[u,te] equal to

the values the individual had when he/she stopped smoking

88toxf@u, teD<, 8Νf@u, teD<< = %15 �. :toxf0 ®

: 1

2 Γ1
ã-te Γ1 -1 + ãte Γ1

2

Γ0 + -1 + ã2 te Γ1

Γ1 Hp ∆ - Νc0L + Εtoxc@teD>,

Νf0 ® : 1

Γ1
J-SinhBte Γ1 F Γ0 + Γ1

Jp ∆ + CoshBte Γ1 F H-p ∆ + Νc0LNN + ΕΝc@teD>>
— General::spell1 :

Possible spelling error: new symbol name

"toxc" is similar to existing symbol "tox".

— General::spell1 :

Possible spelling error: new symbol name

"Νc" is similar to existing symbol "Ν".

:::-
1

2
ã-u Γ1 +

ãu Γ1

2
-
1

Γ1
+

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

Γ0 -

ã-u Γ1 K-1 + ã2 u Γ1 O ã-u Γ1

2 Γ1
- ãu Γ1

2 Γ1
Γ0

2 Γ1
+

1

2
ã-u Γ1 +

ãu Γ1

2

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1
+

Σf

+
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1

2
ã-u Γ1 +

ãu Γ1

2
-

ã-u Γ1

2 Γ1
+

ãu Γ1

2 Γ1
Σf

H-88Ω<<0 + 88Ω<<uL + 1 -
1

2
ã-u Γ1 K1 + ã2 u Γ1 O

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1
Σf H-88Ω<<0 + 88Ω<<uL -

1

2 Γ1
ã-u Γ1 1

2
ã-u Γ1 +

ãu Γ1

2
K-1 + ã2 u Γ1 O

Σf H-88Ω<<0 + 88Ω<<uL +
1

2
ã-u Γ1 +

ãu Γ1

2

1

2 Γ1
ã-te Γ1 K-1 + ãte Γ1 O2

Γ0 + K-1 + ã2 te Γ1 O
Γ1 Hp ∆ - Νc0L + Εtoxc@teD +

ã-u Γ1

2 Γ1
-

ãu Γ1

2 Γ1

1

Γ1
I-SinhAte Γ1 E Γ0 +

Γ1 Ip ∆ + CoshAte Γ1 E H-p ∆ + Νc0LMM +

ΕΝc@teD >>, ::- -
1

Γ1
+

ã-u Γ1 K1 + ã2 u Γ1 O
2 Γ1

1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1 Γ0 -

ã-u Γ1 K 1
2

ã-u Γ1 + ãu Γ1

2
O K-1 + ã2 u Γ1 O Γ0

2 Γ1
+

1

2
ã-u Γ1 +

ãu Γ1

2
1 -

1

2
ã-u Γ1 K1 + ã2 u Γ1 O

Σf H-88Ω<<0 + 88Ω<<uL +

Appendix 1 TRDRPwriteup2009.nb 43



1

2
ã-u Γ1 +

ãu Γ1

2

2

+ -
ã-u Γ1

2 Γ1
+

ãu Γ1

2 Γ1

1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1

Σf H-88Ω<<0 + 88Ω<<uL -
1

2 Γ1
ã-u Γ1

K-1 + ã2 u Γ1 O 1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1

Σf H-88Ω<<0 + 88Ω<<uL +

1

2
ã-u Γ1 Γ1 -

1

2
ãu Γ1 Γ1

1

2 Γ1
ã-te Γ1 K-1 + ãte Γ1 O2

Γ0 +

K-1 + ã2 te Γ1 O Γ1 Hp ∆ - Νc0L +

Εtoxc@teD +
1

2
ã-u Γ1 +

ãu Γ1

2

1

Γ1
I-SinhAte Γ1 E Γ0 + Γ1 Ip ∆ +

CoshAte Γ1 E H-p ∆ + Νc0LMM + ΕΝc@teD >>>
FullSimplify@%D
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::: 1

2 Γ1
ã-Hte+uL Γ1 K-1 + ãHte+uL Γ1 O2

Γ0 +

K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L +

2 ãHte+uL Γ1 Γ1 CoshAu Γ1 E Εtoxc@teD -

2 ãHte+uL Γ1 Γ1 SinhAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDL >>,

:: 1

Γ1
I-SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0L -

Γ1 SinhAu Γ1 E Εtoxc@teD + Γ1 CoshAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDLM>>>

The  expected  value  of  toxf @u, teD and Νf[u,te]  are  found  by

setting  all  Wiener  processes  and  random  errors  equal  to

zero.

% �. 8H-88Ω<<0 + 88Ω<<uL ® 0,

Εtoxc@teD ® 0, ΕΝc@teD ® 0<

::: 1

2 Γ1
ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 +

K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L >>,
:: 1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM>>>
The Wiener process here is given by all of the terms, minus

the  expected  values,  and  then  setting  the  other  two  errors

to zero
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H%17 - %18L �. 8 Εtoxc@teD ® 0, ΕΝc@teD ® 0<

:::-
1

2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O
Γ1 Hp ∆ - Νc0L +

1

2 Γ1
ã-Hte+uL Γ1 K-1 + ãHte+uL Γ1 O2

Γ0 +

K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L -

2 ãHte+uL Γ1 Γ1 SinhAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uLL >>,

::-
1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E
Γ0 + Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM +

1

Γ1
I-SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0L + Γ1

CoshAu Γ1 E Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uLLM>>>
FullSimplify@%19D

::: SinhAu Γ1 E Σf H88Ω<<0 - 88Ω<<uL
Γ1

>>,
99CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL==>

In  the  above  statement  of  the  Wiener  process  for

toxf@u, teD, the Wiener process is going backward.  Multiply
this  term  by  -1  and   change  the  signs  in  the  Wiener  pro-

cesses.  Call these errors Εtoxf@uD and ΕΝf '@uD, respectively.
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In  the  above  statement  of  the  Wiener  process  for

toxf@u, teD, the Wiener process is going backward.  Multiply
this  term  by  -1  and   change  the  signs  in  the  Wiener  pro-

cesses.  Call these errors Εtoxf@uD and ΕΝf '@uD, respectively.
:

-SinhBu Γ1 F Σf H-88Ω<<0 + 88Ω<<uL
Γ1

,

CoshBu Γ1 F Σf H-88Ω<<0 + 88Ω<<uL>

:-
SinhAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL

Γ1
,

CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL>
The coefficient on the Εtoxc@teDerror is found by taking the
whole  expression,  subtracting  off  the  expected  values,  the

Wiener process, and setting ΕΝc@teD ® 0
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H%17 - %18 - %21L �. ΕΝc@teD ® 0

:::-
1

2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O
Γ1 Hp ∆ - Νc0L +

SinhAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL
Γ1

+

1

2 Γ1
ã-Hte+uL Γ1

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O
Γ1 Hp ∆ - Νc0L - 2 ãHte+uL Γ1 Γ1

SinhAu Γ1 E Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uLL +

2 ãHte+uL Γ1 Γ1 CoshAu Γ1 E Εtoxc@teD >>,
::-

1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E
Γ0 + Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM -

CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL +

1

Γ1
I-SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0L +

Γ1 CoshAu Γ1 E Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uLL -

Γ1 SinhAu Γ1 E Εtoxc@teDM>>>
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FullSimplify@%22D
999CoshAu Γ1 E Εtoxc@teD==,

99- Γ1 SinhAu Γ1 E Εtoxc@teD===
The coefficient on the ΕΝc@teD is found by taking the whole
expression, subtracting off the expected values, the Wiener

process, and setting Εtoxc@teD ® 0
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H%17 - %18 - %21L �. Εtoxc@teD ® 0

:::-
1

2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O
Γ1 Hp ∆ - Νc0L +

SinhAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL
Γ1

+

1

2 Γ1
ã-Hte+uL Γ1

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O Γ1

Hp ∆ - Νc0L - 2 ãHte+uL Γ1 Γ1 SinhAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDL >>,

::-
1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E
Γ0 + Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM -

CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL +

1

Γ1

I-SinhAHte + uL Γ1 E Γ0 + Γ1 CoshAHte + uL Γ1 E
H-p ∆ + Νc0L + Γ1 CoshAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDLM>>>
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FullSimplify@%D

:::-
SinhAu Γ1 E ΕΝc@teD

Γ1
>>, 99CoshAu Γ1 E ΕΝc@teD==>

This is a check.  Do all the components add up to the whole?

%17 - H%18 + %21 + %23 + %25L

:::-
1

2 Γ1

ã-Hte+uL Γ1 -2 ãHte+uL Γ1 p Γ1 ∆ SinhAu Γ1 E +

K-1 + ãHte+uL Γ1 O2

Γ0 + K-1 + ã2 Hte+uL Γ1 O
Γ1 Hp ∆ - Νc0L +

SinhAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL
Γ1

-

CoshAu Γ1 E Εtoxc@teD +

SinhAu Γ1 E ΕΝc@teD
Γ1

+

1

2 Γ1
ã-Hte+uL Γ1 K-1 + ãHte+uL Γ1 O2

Γ0 +

K-1 + ã2 Hte+uL Γ1 O Γ1 Hp ∆ - Νc0L +

2 ãHte+uL Γ1 Γ1 CoshAu Γ1 E Εtoxc@teD -

2 ãHte+uL Γ1 Γ1 SinhAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDL >>,

::-
1

Γ1
Ip Γ1 ∆ CoshAu Γ1 E - SinhAHte + uL Γ1 E
Γ0 + Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0LM -

CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL +

-

+
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Γ1 SinhAu Γ1 E Εtoxc@teD -

CoshAu Γ1 E ΕΝc@teD +

1

Γ1
I-SinhAHte + uL Γ1 E Γ0 +

Γ1 CoshAHte + uL Γ1 E H-p ∆ + Νc0L -

Γ1 SinhAu Γ1 E Εtoxc@teD + Γ1 CoshAu Γ1 E
Hp ∆ + Σf H-88Ω<<0 + 88Ω<<uL + ΕΝc@teDLM>>>

FullSimplify@%26D
8880<<, 880<<<

We  now  derive  the  variance  of  the  Wiener  process.   Start

with the process

%21

:-
SinhAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL

Γ1
,

CoshAu Γ1 E Σf H-88Ω<<0 + 88Ω<<uL>
The variance of the Wiener process is

: -
SinhBu Γ1 F Σf

Γ1
^2 u, JCoshBu Γ1 F Σf N^2 u>

: u SinhAu Γ1 E2
Σf
2

Γ1
, u CoshAu Γ1 E2

Σf
2>

The whole error term that includes Εtoxc@teD is

%23

999CoshAu Γ1 E Εtoxc@teD==,
99- Γ1 SinhAu Γ1 E Εtoxc@teD===
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The variance of these terms are

:JCoshBu Γ1 FN^2 V@ Εtoxc@teDD,
J- Γ1 SinhBu Γ1 FN^2 V@ Εtoxc@teDD>

:CoshAu Γ1 E2
V@Εtoxc@teDD,

Γ1 SinhAu Γ1 E2
V@Εtoxc@teDD>

Next is the expression of V@Εtoxc@teD from Appendix 1 :

:-
SinhBte Γ1 F Σc

Γ1
>^2 te

: te SinhAte Γ1 E2
Σc
2

Γ1
>

Putting them together

:CoshBu Γ1 F2 te SinhBte Γ1 F2
Σc
2

Γ1
,

Γ1 SinhBu Γ1 F2 te SinhBte Γ1 F2
Σc
2

Γ1
>

: te CoshAu Γ1 E2
SinhAte Γ1 E2

Σc
2

Γ1
,

te SinhAte Γ1 E2
SinhAu Γ1 E2

Σc
2>

The ΕΝc@teD error term is

%25

:::-
SinhAu Γ1 E ΕΝc@teD

Γ1
>>, 99CoshAu Γ1 E ΕΝc@teD==>

The variance of this term is
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The variance of this term is

: -
SinhBu Γ1 F

Γ1
^2 V@ ΕΝc@teDD,

JCoshBu Γ1 FN^2 V@ ΕΝc@teDD>

: SinhAu Γ1 E2
V@ΕΝc@teDD

Γ1
, CoshAu Γ1 E2

V@ΕΝc@teDD>
Next is the expression of V@ΕΝc@teD from TRDRP1.nb :

:te CoshBte Γ1 F2
Σc
2>

:te CoshAte Γ1 E2
Σc
2>

Putting them together

: -
SinhBu Γ1 F

Γ1
^2 :te CoshBte Γ1 F2

Σc
2>,

JCoshBu Γ1 FN^2 :te CoshBte Γ1 F2
Σc
2>>

:: te CoshAte Γ1 E2
SinhAu Γ1 E2

Σc
2

Γ1
>,

:te CoshAte Γ1 E2
CoshAu Γ1 E2

Σc
2>>

The  variance  of  {toxf[te,u],  Νf[te,u]}  is  equal  to  the  sum

of the variances of the three error terms in its expression

(%29 + %33 + %37)
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%29 + %33 + %37

:: te CoshAu Γ1 E2
SinhAte Γ1 E2

Σc
2

Γ1
+

te CoshAte Γ1 E2
SinhAu Γ1 E2

Σc
2

Γ1
+

u SinhAu Γ1 E2
Σf
2

Γ1
>,

:te CoshAte Γ1 E2
CoshAu Γ1 E2

Σc
2 + te SinhAte Γ1 E2

SinhAu Γ1 E2
Σc
2 + u CoshAu Γ1 E2

Σf
2>>

FullSimplify@%D

:: 1

Γ1

1

4
te I-2 + CoshA2 Hte - uL Γ1 E +

CoshA2 Hte + uL Γ1 EM Σc
2 + u SinhAu Γ1 E2

Σf
2 >,

: 1
4
te I2 + CoshA2 Hte - uL Γ1 E + CoshA2 Hte + uL Γ1 EM
Σc
2 + u CoshAu Γ1 E2

Σf
2>>
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Evaluation of the Economic Impact of California's Tobacco 
Control Program: A Dynamic Model Approach--Appendix 2:  A 
dynamic, normally distributed survival analysis of the 
relationship between aging, smoking history, and the mortality 
of men.

Leonard S. Miller

Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.



Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
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Σc
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                  N[0, Σtoxc
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[3.2b]    Εtoxf@u, teD~
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1

Γ1
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4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM
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2 + u SinhAu Γ1 E2

Σf
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             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.

6   Appendix 2 TRDRPwriteup2.nb



Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.

8   Appendix 2 TRDRPwriteup2.nb



Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].

                  

                

@3.2 aD toxf@u, teD =

=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
Γ0 +

J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;

where:  

[3.2b]    Εtoxf@u, teD~
N[0, 

1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.
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Introduction

In this appendix, I derive a survival model that makes use of the expressions

for the index of tobacco-exposure resulting from an individual's smoking history-

derived in Appendix 1.  Based on this survival model, expressions for the probabil-

ity of living and dying are derived for never-smokers, current smokers, and former-

smokers.  The likelihood function for a sample of  individuals based on these proba-

bilitieis serves to estimate the parameters of the survival model, which include

the parameters of the tobacco-exposure index.. 

Generally, summarizing smoking history with the tobacco exposure index, and the

calculations that estimate the effect of smoking on morbidity, health status and

medical costs that derive from usage of this index to summarize smoking history

make three improvements over smoking status as the operative description of the

effect of smoking behavior on health outcomes.   The first improvement focuses on

the level of information about an individual's smoking history.  This exercise

allows for greater detail about the relationship between variations in smoking behav-

ior and about their causal effect on health outcomes.  Details about an individu-

al's smoking history can be incorporated into the measure used to summarize an indi-

vidual's smoking behavior, the level of accumulated tobacco-exposure of an ever-

smoker.  The measure permits any combination of starting and stopping smoking times

and any daily dossage level, measured as packs of cigarettes smoked per day.   

The second improvement focuses on the causal effect of smoking on the deteriora-

tion of health outcomes.  This improvement is meant to address the fact that esti-

mates of the smoking attributable medical services are often greater for former

smokers than they are for current smokers.  In theory, this should not be the case.

In this analysis, the derived measure of smoking's ability to damage health, the

index  of  tobacco-exposure,  incorporates  theoretical  distinctions  between  current

and former-smokers that cause the expected damage to be less for former-smokers

compared to current smokers, given all other dimensions of smoking history are the

same.  The effects due to smoking status, especially current-smoker versus former-

smoker, of the relationship between smoking behavior and health outcomes that are

to  be  estimated  based  on  this  model  are  not  a  "curve  fit"  exercise  that  best

describes the smoking status-health outcome data.  Rather, the estimates best fit

the  relationship  between  the  effects  of  smoking  behavior  and  health  outcome

expressed by the theory expressed in Appendix 1. In that theory the process describ-

ing tobacco-exposure implies that toxin levels fall when a current-smoker quits his

smoking habit. If a former-smoker has his actual costs greater than a current-

smoker, it results from the randomness in life, or the randomness in response to

tobacco.

The third improvement focuses on the sample selection bias that is always pre-

sent in analyses of the effect of smoking on health outcomes.  Recognize that analy-

ses of the health effects of smoking are performed on living populations.  Death

causes sample selection bias among living cohorts--alive responders are always the

stronger members of any original cohort because they are the group least affected

by smoking behavior.  Consequently, the "all other things equal" assumption between

never-smokers and ever-smokers is never met.  Because the propensity to die for

smokers is higher, the sample of smokers who remain alive is always inherently

stronger than the sample of alive never-smokers.  Thus, the estimated negative

effects of smoking on health outcomes are always understated.  

The method developed here is best described as a dynamic normally distributed

survival analysis; or, perhaps, a dynamic Probit model.  Rather than estimate the

probability of an event occurring over a defined period of time, as in the Probit

model, the dynamic normal survival model estimates the probability of an event occur-

ring over an open ended, unfolding period of time.  In this survival model: (1) the

event of interest--in this case death--either occurs or it does not occur; (2) the

propensity for the event to have occurred by time w is specified as equal to the

expected value of the propensity of the event plus a random error term; (3) the

variables specifying the expected value can vary continuously with time; (4) the

error term at time w has a normal distribution, with (5) an expected value equal to

zero, and (6) a variance that can vary with time.  

If a respondent is an ever-smoker, his tobacco-exposure level is specified as

equal to its expected value plus a random error.  The expected value of tobacco-

exposure, and the distribution of the random errors (the difference between the

true value and the expected value) were derived in Appendix 1.   Since the random

error has a Normal distribution, the method and specification of the empirical analy-

sis explained here is built on survival analyses that are based on random errors

that have a Normal distribution. 

A survival analysis (Kalbfleisch & Prentice, 1980) is developed in this Normal

framework.  The particular survival analysis developed here is of particular inter-

est because it melds two historic lines of quantitative methods: limited dependent

variable  methods,  which  have  been  extensively  developed  by  econometricians

(Maddala, 1983), and survival analysis methods, which have been  extensively devel-

oped by demographers, biostatisticians/epidemiologists, and engineers. In Section

2,  I  analytically  construct  a  dynamic  survivor  model  from  a  Probit  like  model

describing the propensity to be dead at a particular time w in the random life span

indicated by the variable T of a respondent.  The propensity to die is specified as

a linear sum of the expected value of an individual's propensity to experience the

criterion event and a normally distributed random error.   As in a survival model,

the model describes the distribution of a respondent's life span ("time to fail-

ure").  The dynamic character of the resulting analysis is apparent in two ways.

Rather than focusing on whether death {occurred, did not occur} over a defined,

fixed period of time, as in the Probit model, the period under analysis is increas-

ing with the passage of time, as in a survival analysis.  Thus the Probit like speci-

fication of the propensity to be dead at each moment of time is transformed into a

survival analysis describing the random life span variable T.   This transformation

is accomplished in the relationship between the propensity to be dead and the haz-

ard rate, the instantaneous rate of failure (also known as the force for mortality

and the failure rate) at each moment w.  

Variations among parametric survival models focus on the functional form trans-

lating a model's hazard rate into its survival function, the models description of

the probability that a respondent will live at least until time T.  In the various

models used in practice, hazard rates are either constants (such as in the exponen-

tial model, (Chiang, 1980)), functions of constants and powers of time (such as in

the Weibull model,1939), multivariate--weighted linear sums of fixed characteris-

tics  (Tuma,  Hannan,  &  Groeneveld,  1980),  characteristics  that  vary  at  discrete

points of time (Petersen, 1986a, 1986b), or, to a limited degree, characteristics

that can be functions of time (Cox, 1972).  All of the standard models (that I am

aware of) yield closed form expressions for survivor functions and probability den-

sity functions of T.  The analysis developed here makes use of technological and

software developments.  The analytically challenging event probability expressions

are derived using Mathematica (Mathematica, Version 7.1, 2008). In the present analy-

sis, the probability expressions for the never-smoker are closed form expressions-

,but the probability expressions for current and former smokers are not and numeri-

cal integration methods must be used in the estimation of the model's coefficients.

In the analysis to follow, the determinants of the expected value of the propen-

sity die at moment w, denoted by g[w], and the standard error of the random term of

this propensity, denoted by Σ[w], are functions of time and of parameters describ-

ing the cigarette smoking tobacco-exposure process.  The analysis in Section 2

focuses on melding the Probit and Survival analyses.  General probabilistic expres-

sions for the observed sample events are obtained; that is, for the survivor func-

tion--the probability that a life span exceeds the time of data collection (a right

censored event), and the probability density function of the life span T at moment

of death t.  To render these probability expressions applicable to the problem at

hand, more detailed specifications are required before it is possible to construct

the likelihood function for the observed sample.  Section 3 presents a set of back-

ground comments that relate to how the specifications are to be made.  

While the age of a respondent is observed, if the respondent is an ever-

smoker, his accumulated tobacco-exposure is not observed. In Appendix 1, I pre-

sented the development of expressions for the theoretical distribution of tobacco-

exposure of ever smokers.  To render this Appendix "self-contained", a summary of

the relevant closed form expressions is contained in Section 3.  The tobacco-expo-

sure distribution depends on: (1) an individual's smoking behavior (when smoking

was initiated, what was its intensity (packs per day smoked), if and when did a

respondent quit); (2) on parameters describing the distribution of tobacco-expo-

sure, which require estimation; and (3) on randomness that is internal to the smok-

ing process (depth of inhalation, an individual's inherent reaction to tobacco-

toxin ingestion, variation in toxins per pack by brand, etc.).  These tobacco-expo-

sure effects are present in the propensity to die for ever-smokers.  Second-hand

smoke is not considered in this study.  The expected level of tobacco-exposure is

incorporated into the specification of the expected propensity to die by time w

(g[w]); the randomness associated with a respondent's smoking history is incorpo-

rated into the random error of the propensity to die for ever-smokers, and conse-

quently, effects the standard error of the propensity to die, Σ[w], of respondants

in ever-smoker groups.  The random errors in the propensity to die for ever-smokers

include both the random error describing everyone's random chance in life (the ran-

dom error in the never-smokers propensity to die equation) and the random error

describing an individual's random response to smoking. For every smoking history

group, the resulting random error in the propensity to die has a Normal distribu-

tion (Kotz, Balakrishnan, & Johnson, 2000).  

The specifications assume that never-smokers form the basis of the description

between age and death for smokers and never-smokers.  Based on the general proba-

bilistic expressions developed in Section 2 and the specification of the model, the

probability expressions developed for never-smokers, current-smokers, and former-

smokers in Sections 4, 5, and 6.  For never-smokers, the expected propensity to die

by time w is specified in Section 4 as a linear function of age and age-squared as

well as a random variable that increases with time.   The basic randomness in the

propensity to die for never-smokers is the randomness representing the vicissitudes

of life.  This randomness is also present in the normal random variable of the

propensity to die for respondents who are ever-smokers. For current-smokers, the

expected propensity to die by time w is specified in Section 5 as equal to the

expected propensity to die by time w for the never-smoker plus a linear function of

the current-smoker's tobacco-exposure.  The random variable is equal to the random

variable of the never-smoke, plus the product of the coefficient on the expected

tobacco-toxin and the difference between the actual tobacco toxin level for the

individual and the expected value of his tobacco exposure.  This difference is a

random variable whose variance was derived in Appendix 1.  For former-smokers, the

expected propensity to die by time w is specified in Section 6 as equal to the

expected propensity to die by time w for the never-smoker, plus the expected propen-

sity to die for current smokers by time te--the time the individual ended smoking--

plus the expected value of the propensity to die for former smokers who have bab-

stained from smoking for time u. The random variable has a component from each

these expressions.

Section 2: A dynamic Normal survival model. 

Let T represent a random variable denoting the life span of a respondent (time

to failure) and let F[T<=w] denote the probability that a respondent will die prior

to time w.  F[T<=w] is the probability distribution of T.   Let h[w] + O[D] denote

the probability that an individual will die within the interval [w, w + D).   h[w]

denotes the rate of dying at time w.  In the older literature h[w] is known as the

"force of mortality" (Gompertz, 1825; Makeham, 1860); in later literature h[w] is

known as the hazard rate or the failure rate (Kalbfleisch & Prentice, 1980). O[D]

represents second order effects.  O[D] is a function of D; it tends to zero faster

than D tends to zero (Chiang, 1980).

The modern theory of survivor analysis derives from the construction of the

differential equation describing how the distribution of the life span T changes

over time. To the best of my knowledge, this approach was first offered for the

Poisson process by Feller (1957).  If an individual dies prior to the time w + D,

the probability of this event can be expressed by F[T<=w+D].  The respondent must

either have died prior to w, with probability F[T<=w], or if he lived to time w,

the event has a probabilty (1 - F[T<=t]), then he must have died between w and w +

D,  with probability (h[w] + O[D]).   The probabilistic statement detailing these

possibilities is given by equation [2.1], 

[2.1] F[T<=w+D] = F[T<=w] + (1 - F[T<=w])(h[w] + O[D]).

Rearranging terms (moving F[T<=w] to the left side of the equality), dividing

through by D, and taking the limit as D goes to zero yields the differential equa-

tion describing the time rate of change of the distribution of T.  The probability

density function of T (denoted by f[w]) follows from these operations and is given

by equation [2.2a], where the distribution function is subject to the initial condi-

tion that it is equal to 0 when the process begins, F[T=0]=0.  Equation [2.2.2b]

represents this initial condition,

[2.2a]  f[w] = d/dw F[T<=w] = (1 - F[T<=w]) h[w], 

subject to

[2.2b]   F[T=0]=0.

The solution to equations [2.2a], subject to [2.2b], defines the survival func-

tion, the probability that time to death exceeds time w.  This probability, denoted

by G[T>w] is given by equation [2.3],

   w

[2.3]  G[T>w] = (1 - F[T<=w]) = Exp[-Ù h[Τ] âΤ].

  0

We begin by constructing the propensity of a respondent to be dead at some time

w, 0 b w b t.  The propensity to be dead at w is denoted death*[w].  Assume that

the propensity to be dead at w is the sum of the expected value of the propensity

evaluated at time w, denoted by g[w], and a random error at time w, denoted by

¹[w].  Whether the individual is dead or alive at time w (1 or 0, respectively) is

a measure of the observable event "the observation is dead or alive at time w",

respectively.  If the propensity to be dead is greater than zero, an observed

measure will be one, and vise-a-versa.  Equation [2.4a], defines the propensity to

be dead at time w.   Equation [2.4b] defines the relationship between an individu-

al's propensity score and his observable measure death[w]; equation [2.4c] defines

the distribution of the random variable at time w,

[2.4a]  death*[w] = g[w] + ¹[w];

where:

g[w] is the expected value at time w of the respondent's propensity to have 

died by time w;

¹[w] is a random variable at time w;  

[2.4b]  death*[w] {>, b} 0, death[w] = {1,0},

 and   

[2.4c]  ¹[w] ~ Normal[0, Σ2@wD].
With  the  exception  that  a  Probit  model  expresses  equations  [2.4a]  through

[2.4c] for a fixed interval of time rather than for a particular time w, equations

[2.4a] through [2.4c] describe the Probit model, which perhaps suggests the Probit

name for the survival model under development.   

In survival analyses, the hazard rate is defined as the ratio of the rate of

change of the probability of dying to the probability of being alive.  With this

propensity score, the maximum probability of being alive is measured by the distribu-

tion function evaluated at a propensity to die equal to the value zero.  Time rates

of change in this probability will also occur at this propensity value.  The descrip-

tion of the propensity to be dead by time w implies that the propensity score has a

normal  distribution  with  a  mean  g[w]  and  a  variance  Σ2@wD.   This  distribution
implies that equation [2.1] can be stated in Normal distribution terms as equation

[2.5],

[2.5] (1 - F[(death*[w + D]-g[w + D])/Σ[w  + D]) = 

(1 - F[(death*[w]-g[w])/Σ[w]])  + 

 

F[(death*[w]-g[w])/Σ[w]]  (h[w] + O[D]),

where F[] is the normal distribution function.  Replicating the steps that led from

equation [2.1] to equation [2.2] yields an expression for the hazard rate of this

problem; that is--rearrange terms, divide by D,   and take the limit as D goes to

zero--and then (1) evaluate the expressions at death*[w]=0, and (2) solve for the

hazard rate, h[w].  Equation [2.6] describes the hazard rate at time w for this

problem,

[2.6] h[w] = ¶w(F[g[w]/Σ[w]])/(1-F[g[w]/Σ[w]])

= {(1/Σ[w]) j[g[w]/Σ[w]]  (¶w g@wD � Σ@wD)} / 
(1-F-g[w]/Σ[w]]),

where j[]  is the normal probability density function and ¶w  denotes the partial

derivative with respect to w.

The survival function, G[T>w], and the probability density function, f[T=w], of

the random life-span variable T are, respectively, the probability that a respon-

dent was alive when the data were collected at time w, and the probability that a

respondent lived until time w, and then died at time w.  These are the probabili-

ties of the observed events that are associated with the life and death of the

respondents under analysis.  Based on the survival function and the hazard rate

(equations [2.3] and [2.2a], above) the probability of survival and the probability

density function expressions are given by equations [2.7a] and [2.7b],

    t

[2.7a]  G[T>t] = (1 - F[T<=t]) = Exp[-Ù h[w] âw],

    0

and

[2.7b]  f[t] = â/ât  F[T<=t] = G[T>t] h[t].

The likelihood expression for a sample is the product of the probabilities asso-

ciated with each of the observed events in a sample.  Explicit development of the

likelihood  function  for  this  problem  requires  further  specification,  which  will

begin to be made in Section 4.  Section 3 presents background considerations that

affect the specification of the model.

 

Section 3:  Background considerations about time, tobacco-exposure, and

heterogeneity.

It is useful to begin a discussion of the specific implementation of the model

with background considerations about how time is notated and treated in the model.

The zero point of time is taken to be the mean age that American male's begin to

smoke, 17 years of age (REF to NMES).  Moreover, time is measured in decades.  Thus

the age of a 40 year old is measured with a time value of 2.3 decades, ((40 -

17)/10).  

Prior to age 35 or 40 (depending on the specific disease)  epidemiologists do

not generally attribute negative effects of smoking behavior on health, especially

its effect on smoking related diseases (Sammet, ????).  Consistent with this frame-

work, parameter estimations, both in the mortality model under discussion, and in

the smoking related disease models (see Appendix 3), are based on respondents who

are at least 40 years of age (2.3 decades in the age units used in the study's time

measure).   

Time  has  different  relevant  meanings  within  the  different  smoking  statuses.

The notation to be developed will account for all of these differences.   More

specifically, in the specification to be developed for never-smokers, time repre-

sents age; in the specification to be developed for current-smokers, time repre-

sents both age and time smoked; and in the specification to be developed for former-

smokers, time represents age, the duration of time smoked, and the duration of time

a respondent abstained from smoking.   As equation [2.4.3] below will show, the

expected value of the propensity to be dead at time w for never-smokers is speci-

fied as a linear function of age and age-squared.  For current and former smokers,

the specification of the propensity to be dead includes these same never-smoker

terms.  Additionally, the specification includes a coefficient weighted expected

level of  tobacco-exposure, which estimates the effect of smoking history on the

propensity to die.  The propensity to be dead also has a random variable and the

variance of this random variable affects an ever-smoker's probability of dying.  In

every respondent's propensity to be dead, the random variable includes a term associ-

ated with the random variable in the never-smokers propensity to be dead. This term

represents the general vicissitudes of life. For ever-smokers, additionally, the

error term includes the product of the coefficient on the tobacco-exposure variable

in the expected propensity to be dead and a random variable measuring the differ-

ence between a recipient's true tobacco-exposure level and his expected tobacco-

exposure level, given his smoking history.  Thus the variance of the random vari-

able in an ever-smoker's propensity to be dead includes the square of the coeffi-

cient on the tobacco-exposure measure in the expected value of the ever-smoker's

propensity and the variance of the difference between the true and expected tobacco-

exposure in the body of the ever-smoker.

As depicted in equations [2.7a] and [2.7b] above, the notation used in the sur-

vival  function  and  probability  density  functions,  respectively,  describe  the

observed events--lived between time 0 and w (where w represents the final observa-

tion), or died at time w, (here w represents time of death, which is after the acqui-

sition of smoking history, but before the final observation about death in 1999.

These probability expressions include exponentials of the integral of the negative

of the hazard function over the relevant time period.  Based on this data set, the

integration is actually over the age of each respondent from the initial smoking

history acquisition, to either the respondent's age at death, or his age when the

final accumulation of death data was completed.   

To represent both age, and duration of smoking (and for a former-smoker, period

of abstention) in the same integration over observed time, I created a recipient

specific coefficient "Α" to represent a transformation of a recipient's decades of

age into his decades of smoking duration.  That is, "Α" equals the difference

between a respondent's duration of smoking and his age.  Consequently, age + Α

equals duration of smoking.  For current-smokers, the integration in the survival

function occurs over the recipient's age (w) to his age at death or age at the time

of final data collection (w + follow-up time).  However, the time dimensions in a

current-smoker's tobacco-toxin expression are measuring smoking time.  Thus during

the period under analysis the levels of tobacco-exposure are being evaluated for

the years the respondent smoked; from (age + Α) to (age + follow-up time + Α).  Simi-

larly, the time dimensions in a former-smoker's tobacco-toxin expression are measur-

ing decades of abstention, given decades smoked, and the levels of tobacco-exposure

are being evaluated between the years the respondent had abstained at his age when

observation  started  to  the  years  the  respondent  had  abstained  when  observation

ceased.  The decades a former-smoker smoked are denoted by te.  The decades he subse-

quently abstained from smoking are denoted by u.  The integration for former-smok-

ers is over an abstention period (respondents are classified as former-smokers on

their base-line interview).  Thus the time they smoked, te, is a given, and the

duration of abstention  from smoking variable, u, expressed in terms of age as u =

w + Α - te, is integrated over the age of the respondent during his smoking absten-

tion  and either his age at time at death or at final data collection.  

With temporal notation explained, it is possible to understand equations
[3.1a] and [3.1b], closed form expressions describing the expected level and the

variance, respectively, of the level of tobacco-exposure for a current-smoker at

age w during the observation period in the NAS-NRC data.   Equations [3.2a] and

[3.2b] report these same expressions for former-smokers.   The derivations of these

expressions were made in Appendix 1.  Here, these expressions are to be taken as

given.  

@3.1 aD toxc@w, ΑD =

= : 1

2 Γ1

ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L > +

Εtoxc@w + ΑD;
where: 

[3.1b]    Εtoxc@w + ΑD~ N[0, : 1

Γ1
JHw + ΑL SinhAHw + ΑL Γ1 E2

Σc
2N>] = 

                  N[0, Σtoxc
2[t]].
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=
1

2 Γ1

ãH-Hte+uLL Γ1 -2 ãHte + uL Γ1 p Γ1 ∆ SinhAu Γ1 E + J-1 + ãHte + uL Γ1 N2
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J-1 + ã2 Hte + uL Γ1 N Γ1 Hp ∆ - Νc0L + Εtoxf@u, te D;
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1

Γ1
J 1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM

Σc
2 + u SinhAu Γ1 E2

Σf
2NF =

     

             N [0, Σtoxf
2[u,te]].

In a Probit model with a homogenous variance, the propensity equation is implic-

itly "standardized".  The assumed error term's unit variance is achieved by implic-

itly dividing the propensity expression by the (unknown) standard error of the ran-

dom error term.  The implicit division renders the coefficients in the expected

value "standardized" and the model with a random error that has a variance equal to

one.  In a Probit model with heterogenous variance, implicitly a similar step is

taken.   The  heterogenous  variance  might  be  specified  as  the  exponential  of  a

weighted linear sum of characteristics, say Exp[ZΓ].  Feasibility of parameter esti-

mation requires that Z not have a column of one's, which would be multiplying an

intercept term in the vector Γ (Green, 1990).  If Γ0  were the coefficient on an

intercept, and if the remaining part of the variance's ZΓ description were parti-

tioned to separate Γ0 from the remaining products of gamma coefficients and their Z

variables,  the  latter  of  which  will  be  denoted  by  Z1Γ1,  then  [ZΓ]=  Exp[Γ0]

Exp[Z1Γ1].   The absence of Exp[Γ0]  is equivalent to having divided the specifica-

tion of the propensity score by the square root of Exp[Γ0]  (i.e., Exp[Γ0/2],  to

remove Exp[Γ0] from the variance specification.

  

For  the  never-smokers  in  this  study,  the  variance  arising  from  integrating

white  noise  over  time,  for  example  from  age  40,  measured  as  2.3,  to  age  46,

measured  as  2.9,  is  Σ2
n 0.6.   The  never-smoker's  death  propensity  equation  is

divided by Σn  and the variance of the random error in the propensity of a never-

smoker by age w is expressed as the value of his age, w.  For current and former-

smokers, additionally, the variance includes a term associated with the coefficient

weighted variance in the distribution of tobacco-toxins in the body. Thus the coeffi-

cients on the variables in the expected level of the propensity to be dead by age w

are "standardized" by the standard deviation in the vicissitudes of life.  Addition-

ally, the coefficients indicating the constants in the propensity to be dead for

every smoking status, whose description is yet to be made, are similarly standard-

ized.

� Section 4: The probability that a never-smoker lives longer than the final data collection 
date, or that he dies between the initial base-line and the final data collection date.

A never-smoker's age (measured in the units of the problem--decades, with zero equal

to 17 years of age)--is represented by the variable w.  I specify the expected value

of the propensity to be dead by age w (or what would be age w if the person were

alive) as the sum of the product of a constant, Η1, and the individual's age (w), and

the product of a second constant, Η2, and the square of the individual's ageIw2M. 
Equation [4.1] presents the relevant equation, 

[4.1]  death*
n[w] = Η1 w  + Η2 w2 + Vn[w],

 

where  Vn[w] ~ N[0, w].  

A point to emphasize here, which is true for the specifications of the model for

all smoking status groups, is that this is a dynamic model.  All of the variables in

the expected value of the propensity to be dead, as well as the variance of the error

in the propensity to be dead are changing continuously as the respondent ages.  With

respect to the error term, Vn[w], I have assumed that a white noise process underlies

the random error expressed in the propensity to be dead.  As commented on in Section

3 above, I have also assumed that the propensity specification has been standardized

by the size of the standard deviation of the Brownian motion (white-noise) process.

Hence, the eta coefficients are to be understood as standardized.  It follows that

the hazard-rate for the never-smoker at age w is given as follow:

The hazard-rate for a never-smoker, the ratio of the time rate of change in the proba-

bility of dying at age w, divided by the probability of living at age w, is given (in

Mathematica notation) by equation [4.2],

[4.2]
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2 2 w3�2 N
Π J1 + 1

2
J-1 - ErfB w Η1+w2 Η2

2 w
FNN

The survival function for a never - smokes at age "ulag" (which is the upper limit of

the  integration  over  age),  is  the  probability  that  the  never  -  smoker  will  live

beyond age = ulage, given that he was alive at a base - line age, llage (lower -

limit of the integration over age).  It is equal to the exponential of the integral

of the negative of the hazard - rate over the period of observation, from llage, the

age of the respondent at base - line, to ulage, the age of the respondent when observa-

tion is complete, which is either (1) when follow - up is completed; or (2) age at

death.  The Mathematica expression for the survival function is given by equation [4

.3],

[4 .3]

gn =

ExpBIntegrateB-

ã
-

Iw Η1+w2 Η2M2
2 w K Η1+2 w Η2

2 w
-

w Η1+w2 Η2

2 2 w3�2
O

Π K1 + 1

2
K-1 - ErfB w Η1+w2 Η2

2 w
FOO

, 8w, llagein66, ulage<, Assumptions ®

8Element@8llagein66, ulage<, RealsD && llagein66 < ulage && llagein66 > 0<FF
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-1 + ErfB ulage HΗ1+ ulage Η2L
2

F

-1 + ErfB llagein66 HΗ1+llagein66 Η2L
2

F
The hazard-rate evaluated at age of death is given by  equation [4.4],

[4.4]

htn = hn �. w ® ulage

ã
-

Iulage Η1+ulage2 Η2M2
2 ulage J Η1+2 ulage Η2

2 ulage
- ulage Η1+ulage2 Η2

2 2 ulage3�2 N
Π J1 + 1

2
J-1 - ErfB ulage Η1+ulage2 Η2

2 ulage
FNN

The probability density function of the random life span for a never

smoker is the product of the hazard-rate evaluated at time of death and

the survival function evaluated to the time of death, equation [4.5],

[4.5]

fn = htn gn

ã
-

Iulage Η1+ulage2 Η2M2
2 ulage

Η1 + 2 ulage Η2

2 ulage
-
ulage Η1 + ulage2 Η2

2 2 ulage3�2
-1 + ErfB ulage HΗ1 + ulage Η2L

2
F �

Π -1 + ErfB llagein66 HΗ1 + llagein66 Η2L
2

F

1 +
1

2
-1 - ErfBulage Η1 + ulage2 Η2

2 ulage
F
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� Section 5: The dynamic Normal survival model for Current-Smokers.

The nomenclature in the distribution of tobacco-exposure, is as follows:  The vari-

able w is a measure of a respondent's age (in decades after age 17).  The distribu-

tion of tobacco-exposure of current smokers at age w after smoking is initiated is

Normal. Its expected value and variance are given by equation [5.1], (see Appendix 1

for its derivation):

[5.1]

   toxc@w + ΑD~ NB 1

2 Γ1
ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 H w+ΑL Γ1 N Γ1 Hp ∆ - Νc0L

,
Hw+ΑL SinhBHw+ΑL Γ1 F2

Σc2

Γ1
F

where:

w is the age of the respondent;

Α is the difference between the time the respondant initiated smoking

and his age (measured in the units of the problem, so that w + Α is the dura

tion a respondent smoked; 

Γ0 is the trend in the time rate of change of the 

purge rate;

Γ1 is the marginal effect of a unit of tobacco-exposure on the time          

 rate of change of the purge rate;

Νc0 is the purge rate when smoking is initiated,

p is the packs of cigarettes smoked per day; 

∆ is the toxins per pack smoked, and

Σc2 is the square of the standard deviation of the 

Brownian motion process of the random variable in the specification of the 

time rate of change of the purge-rate. This Brownian motion process has been 

"standardized" by the standard deviation of the Brownian motion process of 

describing the vicitudes of life, which is the dynamic process leading to the 

propensity to die by time w for a never-smoker, and applies to all respon

dents.

Equation [5.2.a] is the expression for the expected value of toxc@w + ΑD,
[5.2a]

toxc@w + ΑD =
1

2 Γ1
ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 H w+ΑL Γ1 N Γ1 Hp ∆ - Νc0L

ãH-w-ΑL Γ1 KJ-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0LO

2 Γ1

and equation [5.2.b] is the expression for the time rate of change of the expected

value of toxc@w + ΑD,
[5.2b]
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and equation [5.2.b] is the expression for the time rate of change of the expected

value of toxc@w + ΑD,
[5.2b]

toxc'@w + ΑD = D@toxc@w + ΑD, wD

-

ãH-w-ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L
2 Γ1

+
1

2 Γ1

ãH-w-ΑL Γ1 J2 ãHw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N Γ0 Γ1 + 2 ã2 Hw+ΑL Γ1 Γ1 Hp ∆ - Νc0LN
Equation [5.2.c] is the expression for the standard deviation of the error term in

the latent index of death, denoted  Σtoxc@w + ΑD,
[5.2c]

Σtoxc@w + ΑD = SqrtBw + Η32
Hw + ΑL SinhAHw + ΑL Γ1 E2

Σc2

Γ1
F

w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1

and equation [5.2.d] is the expression for the time rate of change in the standard

deviation of  latent index of death, denoted  Σtoxc@w + ΑD,
[5.2d]

Σtoxc'@w + ΑD = D@Σtoxc@w + ΑD, wD

1 +
1

Γ1
2 Hw + ΑL Η32 Σc2 CoshBHw + ΑL Γ1 F

SinhBHw + ΑL Γ1 F +
Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1
�

2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1

Equation [5.2.e] is the expression for the time rate of change in the probability of

dying,

[5.2e]
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Equation [5.2.e] is the expression for the time rate of change in the probability of

dying,

[5.2e]

DACDFANormalDistribution@0, Σtoxc@w + ΑDD, I Η1 w + Η2 w2 + Η3 toxc@w + ΑDME, wE
1

Π

ã

-

w Η1+w2 Η2+
ãH-w-ΑL Γ1 Η3 -1+ãHw+ΑL Γ1

2

Γ0+ -1+ã2 Hw+ΑL Γ1 Γ1 Hp ∆-Νc0L
2 Γ1

2

2 w+
Hw+ΑL Η32 Σc2 SinhBHw+ΑL Γ1 F2

Γ1 - Kw Η1 + w2 Η2 +

1

2 Γ1
ãH-w-ΑL Γ1 Η3 KJ-1 + ãHw+ΑL Γ1 N2

Γ0 +

J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0LOO
1 +

1

Γ1
2 Hw + ΑL Η32 Σc2 CoshAHw + ΑL Γ1 E

SinhAHw + ΑL Γ1 E +

Η32 Σc2 SinhAHw + ΑL Γ1 E2

Γ1
�

+
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2 2 Kw +
1

Γ1
Hw + ΑL Η32 Σc2

SinhAHw + ΑL Γ1 E2O3�2
+

Η1 + 2 w Η2 -
1

2 Γ1
ãH-w-ΑL Γ1 Η3

KJ-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N

Γ1 Hp ∆ - Νc0LO +
1

2 Γ1
ãH-w-ΑL Γ1 Η3

J2 ãHw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N Γ0 Γ1 +

2 ã2 Hw+ΑL Γ1 Γ1 Hp ∆ - Νc0LN � K 2

-Kw +
1

Γ1
Hw + ΑL Η32 Σc2 SinhAHw + ΑL Γ1 E2OO

Equation [5.3] is the expression for the hazard rate for current smokers.  In the

operation to follow, the component expressions, equations 5.2a-e, developed directly

above, as well as the estimated parameters for never-smokers, are substituted into

the hazard rate expression,

[5.3]
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hc = DACDFANormalDistribution@0, Σtoxc@w + ΑDD, I Η1 w + Η2 w2 + Η3 toxc@w + ΑDME, wE �
I1 - CDFANormalDistribution@0, Σtoxc@w + ΑDD, I Η1 w + Η2 w2 + Η3 toxc@w + ΑDMEM �.

:toxc@w + ΑD ®
1

2 Γ1
ã-Hw+ΑL Γ1

J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L , toxc'@w + ΑD ®

-
1

2 Γ1
ã-Hw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp ∆ - Νc0L +
1

2 Γ1

Jã-Hw+ΑL Γ1 J2 ãHw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N Γ0 Γ1 + 2 ã2 Hw+ΑL Γ1 Γ1 Hp ∆ - Νc0LNN,

Σtoxc@w + ΑD ® w +
Hw + ΑL Η32 Σc2 SinhAHw + ΑL Γ1 E2

Γ1
,

Σtoxc
¢@w + ΑD ®

1 +
2 Hw+ΑL Η32 Σc2 CoshBHw+ΑL Γ1 F SinhBHw+ΑL Γ1 F

Γ1
+

Η32 Σc2 SinhBHw+ΑL Γ1 F2

Γ1

2 w +
Hw+ΑL Η32 Σc2 SinhBHw+ΑL Γ1 F2

Γ1

> �.

8 ∆ ® 1, Η1 ® -1.5681, Η2 ® 0.2205<
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ã-Y - -1.5681` w + 0.2205` w2 +
1

2 Γ1

ãH-w-ΑL Γ1 Η3 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L

1 +
2 Hw + ΑL Η32 Σc2 CoshBHw + ΑL Γ1 F SinhBHw + ΑL Γ1 F

Γ1

+

Η32 Σc2 SinhBHw + ΑL Γ1 F
2

Γ1
� 2 2 w +

Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F
2

Γ1

3�2

+

-1.5681` + 0.441` w -

ãH-w-ΑL Γ1 Η3 J-1 + ãHw+ΑL Γ1 N2
Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L

2 Γ1

+

1

2 Γ1
ãH-w-ΑL Γ1 Η3 K2 ãHw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N Γ0 Γ1 + 2 ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0LO �

2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F

2

Γ1
�

Π 1 +
1

2
-1 - ErfB -1.5681` w + 0.2205` w2 +

1

2 Γ1
ãH-w-ΑL Γ1 Η3

J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L �

2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F

2

Γ1
F
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where : Y =

-1.5681` w + 0.2205` w2 +
1

2 Γ1
ãH-w-ΑL Γ1 Η3 JJ-1 + ãHw+ΑL Γ1 N2

Γ0 +

J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0LN 2 �
2 w +

Hw + ΑL Η32 Σc2 SinhAHw + ΑL Γ1 E2

Γ1

The survival function for a current-smoke at age "ulage" (which is the upper limit of

the  integration  over  age),  is  the  probability  that  the  current-smoker  will  live

beyond ulage (upper-limit of the integration over age), given that the respondent was

alive at the base-line--his age in 1966, llagein66 (lower - limit of the integration

over age--the respondent's age in 1966).  The survival function is equal to the expo-

nential of the integral of the negative of the hazard - rate over the period of obser-

vation, from llage to the age of the respondent when observation is complete, which

is either: (1) the respondent's age when follow-up is completed (his age in 1999); or

(2) his age at death.  The Mathematica expression for the survival function is given

by equation [5.4].  The Hold[] function tells Mathematica not to evaluate the expres-

sion.  It will be evaluated when the individuals age, w, and his adjustment for when

he started smoking, Α, are substituted in.

[5.4]

gc = ExpBHoldBNIntegrateB

- ã-Y - -1.5681` w + 0.2205` w2 +
1

2 Γ1
ãH-w-ΑL Γ1 Η3 -1 + ãHw+ΑL Γ1

2

Γ0 + -1 + ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0L
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1 +
1

Γ1
2 Hw + ΑL Η32 Σc2 CoshBHw + ΑL Γ1 F

SinhBHw + ΑL Γ1 F +
Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1
�

2 2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1

3�2

+

-1.5681` + 0.441` w -
1

2 Γ1
ãH-w-ΑL Γ1 Η3

-1 + ãHw+ΑL Γ1
2

Γ0 + -1 + ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0L +

1

2 Γ1
ãH-w-ΑL Γ1 Η3 2 ãHw+ΑL Γ1 -1 + ãHw+ΑL Γ1

Γ0 Γ1 + 2 ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0L �

2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1
�

Π 1 +
1

2
-1 - ErfB -1.5681` w + 0.2205` w2 +

1

2 Γ1

�
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ãH-w-ΑL Γ1 Η3 -1 + ãHw+ΑL Γ1
2

Γ0 +

-1 + ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0L �

2 w +
Hw + ΑL Η32 Σc2 SinhBHw + ΑL Γ1 F2

Γ1
F ,

8w, llagein66, ulage<FFF

ã

HoldBNIntegrateB-

ã-Y -

-1.5681 w+0.2205 w2+

ãH-w-ΑL Γ1 Η3 -1+ãHw+ΑL Γ1
2

Γ0+ -1+ã2 Hw+ΑL Γ1 Γ1 Hp-Νc0L
2 Γ1

1+

2 2 w+
Hw+ΑL Η32 Σc2 SinhBHw+ΑL 2

Γ1

gc =

Exp@Hold @NIntegrate @-HExp@-YD HH-A BL � C + H D � E LLL � F, 8w, llagein66 , ulage<DD

A = -1.5681` w + 0.2205` w2 +
1

2 Γ1

ãH-w-ΑL Γ1 Η3 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L

B = 1 +
2 Hw + ΑL Σc2 CoshAHw + ΑL Γ1 E SinhAHw + ΑL Γ1 E

Γ1
+

Σc2 SinhAHw + ΑL Γ1 E2

Γ1

C = 2 2 w +
Hw + ΑL Σc2 SinhAHw + ΑL Γ1 E2

Γ1

3�2

D = -1.5681` + 0.441` w +

Η3 -
1

2 Γ1
ãH-w-ΑL Γ1 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L +
1

2 Γ1

ãH-w-ΑL Γ1 J2 ãHw+ΑL Γ1 J-1 + ãHw+ΑL Γ1 N Γ0 Γ1 + 2 ã2 Hw+ΑL Γ1 Γ1 Hp - Νc0LN
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E = 2 w +
Hw + ΑL Σc2 SinhAHw + ΑL Γ1 E2

Γ1

F = Π 1 +
1

2
-1 - ErfB -1.5681` w + 0.2205` w2 +

1

2 Γ1

ãH-w-ΑL Γ1 Η3 J-1 + ãHw+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hw+ΑL Γ1 N Γ1 Hp - Νc0L �

2 w +
Hw + ΑL Σc2 SinhAHw + ΑL Γ1 E2

Γ1
F

To construct the probability density function of the life-span, the proba-

bility of living until time ulage and then dying at time ulage, we need

the hazard-rate evaluated at time of death.  This value is given by  equa-

tion [5.5],

[5.5]

htc = hc �. w ® ulage
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ã-Y - -1.5681` ulage + 0.2205` ulage2 +

1

2 Γ1
ãH-ulage-ΑL Γ1 Η3 J-1 + ãHulage+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hulage+ΑL Γ1 N Γ1 Hp - Νc0L

1 +
1

Γ1

2 Hulage + ΑL Η32 Σc2 CoshBHulage + ΑL Γ1 F SinhBHulage + ΑL Γ1 F +

Η32 Σc2 SinhBHulage + ΑL Γ1 F
2

Γ1
�

2 2 ulage +
Hulage + ΑL Η32 Σc2 SinhBHulage + ΑL Γ1 F

2

Γ1

3�2

+

-1.5681` + 0.441` ulage -
1

2 Γ1

ãH-ulage-ΑL Γ1 Η3

J-1 + ãHulage+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hulage+ΑL Γ1 N Γ1 Hp - Νc0L +
1

2 Γ1
ãH-ulage-ΑL Γ1

Η3 K2 ãHulage+ΑL Γ1 J-1 + ãHulage+ΑL Γ1 N Γ0 Γ1 + 2 ã2 Hulage+ΑL Γ1 Γ1 Hp - Νc0LO �

2 ulage +
Hulage + ΑL Η32 Σc2 SinhBHulage + ΑL Γ1 F

2

Γ1
�

Π 1 +
1

2
-1 - ErfB -1.5681` ulage + 0.2205` ulage2 +

1

2 Γ1
ãH-ulage-ΑL Γ1 Η3 J-1 + ãHulage+ΑL Γ1 N2

Γ0 + J-1 + ã2 Hulage+ΑL Γ1 N Γ1 Hp - Νc0L �

2 ulage +
Hulage + ΑL Η32 Σc2 SinhBHulage + ΑL Γ1 F

2

Γ1
F

The probability density function of the random life span for a current

smoker is the product of the hazard-rate evaluated at time of death and

the survival function evaluated to the time of death, equation [5.6],

[5.6]
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The probability density function of the random life span for a current

smoker is the product of the hazard-rate evaluated at time of death and

the survival function evaluated to the time of death, equation [5.6],

[5.6]

fc = htc gc

fc can be obtained by substitution.

� Section 6: The dynamic Normal survival model for Former-Smokers.

In the analysis of the survival of former smokers, as with the other smok-

ing statuses all time is measured in decades.  te is the time the individ-

ual smoked, u is the time he abstained from smoking.  w is his age, past

17 and Α is the time adjustment to convert age into time smoked.  More-

over, te + u = w + Α.  The distribution of tobacco-exposure of former-

smokers at age w, (u + te - Α) in decades beyound age 17, is Normal. Its

expected value and variance are given by equation [6.1], (see Appendix 1

for derivation).   Note that both the expected value and the variance are composed
of two terms.  The first term (in both) is the expected tobacco-exposure and variance

that occured while the former-smoker was a current smoker.  The second term is the

"contribution" of the former-smoker's abstention to his tobacco exposure and its vari-

ance,  

[6.1]
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toxf@u teD~

NB
ã-te Γ1 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0L
2 Γ1

+

1

2 Γ1
ã-Hte+uL Γ1 J-1 + ãu Γ1 N JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN ,

1

Γ1

1

4
te I-2 + CoshA2 H te - uL Γ1 E + CoshA2 Hte + uL Γ1 EM Σc

2 +

u SinhAu Γ1 E2
Σf
2 F

 In addition to the age and smoking related terms discussed immediately

above, 

Γ0 is the trend in the time rate of change of the 

purge rate;

Γ1 is the marginal effect of a unit of tobacco-toxin 

on the time rate of change of the purge rate;

Νc0 is the purge rate when smoking is first initiated,

p is the packs of cigarettes smoked per day; 

∆ is the toxins per pack smoked, and

Σc2 & Σf2 are, respectively, the square of the 

standard deviation of the Brownian motion process of the random 

variable in the specification of the time rate of change of the 

purge-rate  for  current  and  former  smokers.  This  Brownian

motion process has been "standardized" by the standard deviation

of the Brownian motion process of describing the vicitudes of life, 

which is the dynamic process leading to the propensity to die

by time w for a never-smoker, and applies to all respondents.

The propensity for a former-smoker to be dead by age w (in decades),

given he smoked for te decades is specified by equation [6.2], 

[6.2]  death*[u|te,Α] =  Η1 (u+te-Α) +  Η2 Hu + te - ΑL2 + Η3 E[toxc@teD] 
+ Η4 E[toxf@u teD] +  ¹[u|Α,te], 

where:

E[] is the expectation operator;

¹[u|Α,te] is a random variable with a Normal distribution whose 

expected value equals zero; and whose variance at age w, for a 

former-smoker who smoked a duration te decades equals the quan-

tity ( See Appendix 1),

  

V@¹@u Α, teDD = Hu + te - ΑL + Η32 J 1
Γ1

I 1
4
te I-2 + CoshA2 H te - uL Γ1 E +

CoshA2 Hte + uL Γ1 EMMN Σc
2 + Η42 Ju SinhAu Γ1 E2

Σf
2N

      
As in Section 5 above, we now detail expressions for the components of the hazard

rate.  From equation [6.1] the expected value of the former-smokers tobacco exposure

is given by equation [6.3],

[6.3a]
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The propensity for a former-smoker to be dead by age w (in decades),

given he smoked for te decades is specified by equation [6.2], 

[6.2]  death*[u|te,Α] =  Η1 (u+te-Α) +  Η2 Hu + te - ΑL2 + Η3 E[toxc@teD] 
+ Η4 E[toxf@u teD] +  ¹[u|Α,te], 

where:

E[] is the expectation operator;

¹[u|Α,te] is a random variable with a Normal distribution whose 

expected value equals zero; and whose variance at age w, for a 

former-smoker who smoked a duration te decades equals the quan-

tity ( See Appendix 1),

  

V@¹@u Α, teDD = Hu + te - ΑL + Η32 J 1
Γ1

I 1
4
te I-2 + CoshA2 H te - uL Γ1 E +

CoshA2 Hte + uL Γ1 EMMN Σc
2 + Η42 Ju SinhAu Γ1 E2

Σf
2N

      
As in Section 5 above, we now detail expressions for the components of the hazard

rate.  From equation [6.1] the expected value of the former-smokers tobacco exposure

is given by equation [6.3],

[6.3a]

     

toxf =
1

2 Γ1

ã-te Γ1 KJ-1 + ãte Γ1 N2
Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0LO +

1

2 Γ1
ã-Hte+uL Γ1 J-1 + ãu Γ1 N JJ-1 + ãH2 te+uL Γ1 N Γ0 + Γ1

JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN
ã-te Γ1 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0L
2 Γ1

+
1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N

JJ-1 + ãH2 te+uL Γ1 N Γ0 + Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN
Equation [6.3b] is the expression for the time rate of change of the expected value

of toxf [u|te],

[6.3b]
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Equation [6.3b] is the expression for the time rate of change of the expected value

of toxf [u|te],

[6.3b]

tox f' = D@tox f, uD
1

2 Γ1
ãH-te-uL Γ1 +u Γ1 JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN -

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN +

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N JãH2 te+uL Γ1 Γ1 Γ0 +

Γ1 JãHte+uL Γ1 J-1 + ãte Γ1 N p Γ1 ∆ - ãH2 te+uL Γ1 Γ1 Νc0NN
From the remarks for equation [6.2], equation [6.3c] is the expression for the stan-

dard deviation of the error term in the latent index of death, ¹[w, Α | te],denoted

Σtoxf@w + ΑD,
[6.3c]

Σ toxf = SqrtB Hu + te - ΑL + Η32
1

Γ1

1

4
te J-2 + CoshB2 Hte - uL Γ1 F +

CoshB2 Hte + uL Γ1 FN Σc
2 + Η42 Ju SinhAu Γ1 E2

Σf
2NF

. te + u - Α +

te Η32 I-2 + CoshA2 Hte - uL Γ1 E + CoshA2 Hte + uL Γ1 EM Σc
2

4 Γ1
+ u Η42 SinhBu Γ1 F2

Σf
2

Equation [6.3d] is the expression for the time rate of change in the standard devia-

tion of the error term in the latent index of death, denoted  Σtoxf',

[6.3d]
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Σtoxf' = DB. Hte + u - ΑL +
te Η32 I-2 + CoshA2 Hte - uL Γ1 E + CoshA2 Hte + uL Γ1 EM Σc

2

4 Γ1
+

u Η42 SinhAu Γ1 E2
Σf
2 , uF

1 +
1

4 Γ1
te Η32 J-2 Γ1 SinhB2 Hte - uL Γ1 F + 2 Γ1 SinhB2 Hte + uL Γ1 FN Σc

2 +

2 u Γ1 Η42 CoshBu Γ1 F SinhBu Γ1 F Σf
2 + Η42 SinhBu Γ1 F2

Σf
2 �

2 . te + u - Α +
te Η32 I-2 + CoshA2 Hte - uL Γ1 E + CoshA2 Hte + uL Γ1 EM Σc

2

4 Γ1
+

u Η42 SinhBu Γ1 F2

Σf
2

Equation [6.3e] is the expression for the time rate of change in the proba-

bility of dying, 

[6.3e]  ¶Pr[death]/¶u =

DBCDFBNormalDistributionB0,

SqrtBHu + te - ΑL + Η32
1

Γ1

1

4
te J-2 + CoshB2 H te - uL Γ1 F +

CoshB2 Hte + uL Γ1 FN Σc
2 + Η42 Ju SinhAu Γ1 E2

Σf
2NFF,

Η1 Hte + u - ΑL + Η2 Hte + u - ΑL2 +

Η3

ã-te Γ1 J-1 + ãte Γ1 N2
Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0L

2 Γ1
+

Η4
1

2 Γ1
ã-Hte+uL Γ1 J-1 + ãu Γ1 N JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN F, uF
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=
1

Π
ã-HA�BL

- Hte + u - ΑL Η1 + Hte + u - ΑL2 Η2 +
1

2 Γ1
ã-te Γ1 Η3 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N Γ1

Hp ∆ - Νc0L +
1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 KJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NO

1 +
1

4 Γ1
te Η32 K-2 Γ1 SinhB2 Hte - uL Γ1 F + 2 Γ1 SinhB2 Hte + uL Γ1 FO Σc

2 +

2 u Γ1 Η42 CoshBu Γ1 F SinhBu Γ1 F Σf
2 + Η42 SinhBu Γ1 F

2

Σf
2 �

2 2 te + u - Α +
1

4 Γ1
te Η32 K-2 + CoshB2 Hte - uL Γ1 F + CoshB2 Hte + uL Γ1 FO Σc

2 +

u Η42 SinhBu Γ1 F
2

Σf
2

3�2
+

Η1 + 2 Hte + u - ΑL Η2 +
1

2 Γ1

ãH-te-uL Γ1 +u Γ1 Η4 KJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NO -

1

2 Γ1

ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 KJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NO +

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 KãH2 te+uL Γ1 Γ1 Γ0 +

Γ1 KãHte+uL Γ1 J-1 + ãte Γ1 N p Γ1 ∆ - ãH2 te+uL Γ1 Γ1 Νc0OO �

2 . te + u - Α +
1

4 Γ1
te Η32 K-2 + CoshB2 Hte - uL Γ1 F + CoshB2 Hte + uL Γ1 FO Σc

2 +

u Η42 SinhBu Γ1 F
2

Σf
2

where (A / B) is defined as follows :

Appendix 2 TRDRPwriteup2.nb  31



Hte + u - ΑL Η1 + Hte + u - ΑL2 Η2 +
1

2 Γ1
ã-te Γ1 Η3 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0L +

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 KJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NO
2

�

2 te + u - Α +
1

4 Γ1
te Η32 K-2 + CoshB2 Hte - uL Γ1 F + CoshB2 Hte + uL Γ1 FO Σc

2 +

u Η42 SinhBu Γ1 F
2

Σf
2 �.

8∆ ® 1, Η1 ® -1.5681, Η2 ® 0.2205, Η3 ® 0.1107, Γ0 ® 0,
Γ1 ® Exp@-21.5052D,
Νc0 ® -1.7248, Σc ® Exp@-27.1608D<

HA � BL =

I2587.691333548374` ã-0.000021389722677666222` te I-1 + ã0.000042779445355332445` teM H1.7248` + pL - 1.5681`

Hte + u - ΑL + 0.2205` Hte + u - ΑL2 + 23375.71213684168` ã0.000021389722677666222` H-te-uL

I-1 + ã0.000021389722677666222` uM I1.7248` I1 + ã0.000021389722677666222` H2 te+uLM +

I-1 + ã0.000021389722677666222` teM I-1 + ã0.000021389722677666222` Hte+uLM pM Η4M2 �
I2 Ite + u - Α + 1.714959287456654`*^-17 te H-2 + Cosh@0.000042779445355332445` Hte - uLD + Cosh@

0.000042779445355332445` Hte + uLDL + u Η42 Sinh@0.000021389722677666222` uD2 Σf
2MM

Set::write: Tag Times in
H�1�L2

B

is Protected. �

The hazard rate for former smokers, hf, is the ratio of the time rate of change in the

probability of dying, divided by the probability of living, equation [6.4],

[6.4]

hf =
1

Π
ã-A�B

- Hte + u - ΑL Η1 + Hte + u - ΑL2 Η2 +
1

2 Γ1
ã-te Γ1 Η3 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N

Γ1 Hp ∆ - Νc0L +
1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 JJ-1 + ãH2 te+uL Γ1 N

Γ0 + N
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Γ0 + Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN
1

4 Γ1
te Η32 I-2 Γ1 SinhA2 Hte - uL Γ1 E + 2 Γ1 SinhA2 Hte + uL Γ1 EM Σc

2 +

2 u Γ1 Η42 CoshAu Γ1 E SinhAu Γ1 E Σf
2 + Η42 SinhAu Γ1 E2

Σf
2 �

2 2 Hu + te - ΑL +
1

4 Γ1
te Η32 I-2 + CoshA2 Hte - uL Γ1 E +

CoshA2 Hte + uL Γ1 EM Σc
2 + u Η42 SinhAu Γ1 E2

Σf
2

3�2
+

Η1 + 2 Hte + u - ΑL Η2 +
1

2 Γ1
ãH-te-uL Γ1 +u Γ1 Η4 JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN -

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN +

1

2 Γ1
ãH-te-uL Γ1 J-1 + ãu Γ1 N Η4 JãH2 te+uL Γ1 Γ1 Γ0 +

Γ1 JãHte+uL Γ1 J-1 + ãte Γ1 N p Γ1 ∆ - ãH2 te+uL Γ1 Γ1 Νc0NN �

2 . Hu + te - ΑL +
1

4 Γ1
te Η32 I-2 + CoshA2 Hte - uL Γ1 E + CoshA

2 Hte + uL Γ1 EM Σc
2 + u Η42 SinhAu Γ1 E2

Σf
2 �

1 - CDFBNormalDistributionB0, SqrtBHu + te - ΑL + Η32

1

Γ1

1

4
te J-2 + CoshB2 H te - uL Γ1 F +

CoshB2 Hte + uL Γ1 FN Σc
2 + Η42 Ju SinhAu Γ1 E2

Σf
2NFF,
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Η1 Hte + u - ΑL + Η2 Hte + u - ΑL2 +

Η3
1

2 Γ1
ã-te Γ1 J-1 + ãte Γ1 N2

Γ0 + J-1 + ã2 te Γ1 N Γ1 Hp ∆ - Νc0L +

Η4
1

2 Γ1
ã-Hte+uL Γ1 J-1 + ãu Γ1 N JJ-1 + ãH2 te+uL Γ1 N Γ0 +

Γ1 JJ-1 + ãte Γ1 N J-1 + ãHte+uL Γ1 N p ∆ - J1 + ãH2 te+uL Γ1 N Νc0NN F �.
8 ∆ ® 1, Η1 ® -1.5681, Η2 ® 0.2205`, Η3 ® 0.1107, Γ0 ® 0,

Γ1 ® Exp@-21.50524D, Νc0 ® -1.7248, Σc ® Exp@-27.1608D<
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hf = Jã-HA�BL

J-II2587.7430878925893` ã-0.00002138929488749056` te I-1 + ã0.00004277858977498112` teM H1.7248` + pL -

1.5681` Hte + u - ΑL + 0.2205` Hte + u - ΑL2 +

23376.179655759614` ã0.00002138929488749056` H-te-uL I-1 + ã0.00002138929488749056` uM
I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM + I-1 + ã0.00002138929488749056` teM

I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M I1.7150278872001417`*^-17 te

H-0.00004277858977498112` Sinh@0.00004277858977498112` Hte - uLD +

0.00004277858977498112` Sinh@0.00004277858977498112` Hte + uLDL +

0.00004277858977498112` u Η42 Cosh@0.00002138929488749056` uD
Sinh@0.00002138929488749056` uD Σf

2 + Η42 Sinh@0.00002138929488749056` uD2 Σf
2MM �

J2 2 Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`
Hte - uLD + Cosh@0.00004277858977498112` Hte + uLDL +

u Η42 Sinh@0.00002138929488749056` uD2 Σf
2M3�2N +

I-1.5681` + 0.441` Hte + u - ΑL + 23376.179655759614` ã0.00002138929488749056` H-te-uL

I-1 + ã0.00002138929488749056` uM I0.00003689225582194372` ã0.00002138929488749056` H2 te+uL +

0.00002138929488749056` ã0.00002138929488749056` Hte+uL I-1 + ã0.00002138929488749056` teM pM
Η4 + 0.5` ã0.00002138929488749056` H-te-uL+0.00002138929488749056` u

I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM + I-1 + ã0.00002138929488749056` teM
I-1 + ã0.00002138929488749056` Hte+uLM pM Η4 - 0.5` ã0.00002138929488749056` H-te-uL

I-1 + ã0.00002138929488749056` uM I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M �
J 2 ,Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`

Hte - uLD + Cosh@0.00004277858977498112` Hte + uLDL +

u Η42 Sinh@0.00002138929488749056` uD2 Σf
2MNNN �

Π 1 +
1

2
J-1 - ErfBI2587.7430878925893` ã-0.00002138929488749056` te

I-1 + ã0.00004277858977498112` teM H1.7248` + pL - 1.5681` Hte + u - ΑL +

0.2205` Hte + u - ΑL2 + 23376.179655759614` ã0.00002138929488749056` H-te-uL

I-1 + ã0.00002138929488749056` uM I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M �
J 2 ,Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@

0.00004277858977498112` Hte - uLD + Cosh@0.00004277858977498112`
Hte + uLDL + u Η42 Sinh@0.00002138929488749056` uD2 Σf

2MNFN
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Jã-HA�BL J-II2587.7430878925893` ã-0.00002138929488749056` te I-1 + ã0.00004277858977498112` teM H1.7248` + pL -

1.5681` Hte + u - ΑL + 0.2205` Hte + u - ΑL2 +

23376.179655759614` ã0.00002138929488749056` H-te-uL I-1 + ã0.00002138929488749056` uM
I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM + I-1 + ã0.00002138929488749056` teM

I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M I1.7150278872001417`*^-17 te

H-0.00004277858977498112` Sinh@0.00004277858977498112` Hte - uLD +

0.00004277858977498112` Sinh@0.00004277858977498112` Hte + uLDL +

0.00004277858977498112` u Η42 Cosh@0.00002138929488749056` uD
Sinh@0.00002138929488749056` uD Σf

2 + Η42 Sinh@0.00002138929488749056` uD2 Σf
2MM �

J2 2 Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`
Hte - uLD + Cosh@0.00004277858977498112` Hte + uLDL +

u Η42 Sinh@0.00002138929488749056` uD2 Σf
2M3�2N +

I-1.5681` + 0.441` Hte + u - ΑL + 23376.179655759614` ã0.00002138929488749056` H-te-uL

I-1 + ã0.00002138929488749056` uM I0.00003689225582194372` ã0.00002138929488749056` H2 te+uL +

0.00002138929488749056` ã0.00002138929488749056` Hte+uL I-1 + ã0.00002138929488749056` teM pM Η4 +

0.5` ã0.00002138929488749056` H-te-uL+0.00002138929488749056` u

I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+uLM pM Η4 -

0.5` ã0.00002138929488749056` H-te-uL I-1 + ã0.00002138929488749056` uM
I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M �
J 2 ,Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`

Hte - uLD + Cosh@0.00004277858977498112` Hte + uLDL +

u Η42 Sinh@0.00002138929488749056` uD2 Σf
2MNNN �

Π 1 +
1

2
J-1 - ErfBI2587.7430878925893` ã-0.00002138929488749056` te

I-1 + ã0.00004277858977498112` teM H1.7248` + pL - 1.5681` Hte + u - ΑL +

0.2205` Hte + u - ΑL2 + 23376.179655759614` ã0.00002138929488749056` H-te-uL

I-1 + ã0.00002138929488749056` uM I1.7248` I1 + ã0.00002138929488749056` H2 te+uLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+uLM pM Η4M �
J 2 ,Ite + u - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@

0.00004277858977498112` Hte - uLD + Cosh@0.00004277858977498112`
Hte + uLDL + u Η42 Sinh@0.00002138929488749056` uD2 Σf

2MNFN

The survival function for a former-smoker, the exponential of the inte-

gral of the negative of the hazard-rate over the period of observation,

is given by equation [6.5]].  Note that this equation requires numerical

methods to carry out.

[6.5]

gf = Exp@Hold@NIntegrate@-hf, 8u, 0, ulage<DDD
The hazard-rate for former-smokers evaluated at time of death is given by

equation [6.6],

[6.6]
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The hazard-rate for former-smokers evaluated at time of death is given by

equation [6.6],

[6.6]

htf = hf �. u -> ulage

Jã-HA�BL J-II2587.7430878925893` ã-0.00002138929488749056` te I-1 + ã0.00004277858977498112` teM H1.7248` + pL -

1.5681` Hte + ulage - ΑL + 0.2205` Hte + ulage - ΑL2 +

23376.179655759614` ã0.00002138929488749056` H-te-ulageL I-1 + ã0.00002138929488749056` ulageM
I1.7248` I1 + ã0.00002138929488749056` H2 te+ulageLM + I-1 + ã0.00002138929488749056` teM

I-1 + ã0.00002138929488749056` Hte+ulageLM pM Η4M I1.7150278872001417`*^-17 te

H-0.00004277858977498112` Sinh@0.00004277858977498112` Hte - ulageLD +

0.00004277858977498112` Sinh@0.00004277858977498112` Hte + ulageLDL +

0.00004277858977498112` ulage Η42 Cosh@0.00002138929488749056` ulageD
Sinh@0.00002138929488749056` ulageD Σf

2 +

Η42 Sinh@0.00002138929488749056` ulageD2 Σf
2MM �

J2 2 Ite + ulage - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`
Hte - ulageLD + Cosh@0.00004277858977498112` Hte + ulageLDL +

ulage Η42 Sinh@0.00002138929488749056` ulageD2 Σf
2M3�2N +

I-1.5681` + 0.441` Hte + ulage - ΑL + 23376.179655759614` ã0.00002138929488749056` H-te-ulageL

I-1 + ã0.00002138929488749056` ulageM I0.00003689225582194372` ã0.00002138929488749056` H2 te+ulageL +

0.00002138929488749056` ã0.00002138929488749056` Hte+ulageL I-1 + ã0.00002138929488749056` teM pM
Η4 + 0.5` ã0.00002138929488749056` H-te-ulageL+0.00002138929488749056` ulage

I1.7248` I1 + ã0.00002138929488749056` H2 te+ulageLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+ulageLM pM Η4 -

0.5` ã0.00002138929488749056` H-te-ulageL I-1 + ã0.00002138929488749056` ulageM
I1.7248` I1 + ã0.00002138929488749056` H2 te+ulageLM +

I-1 + ã0.00002138929488749056` teM I-1 + ã0.00002138929488749056` Hte+ulageLM pM Η4M �
J 2 ,Ite + ulage - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@0.00004277858977498112`

Hte - ulageLD + Cosh@0.00004277858977498112` Hte + ulageLDL +

ulage Η42 Sinh@0.00002138929488749056` ulageD2 Σf
2MNNN �

Π 1 +
1

2
J-1 - ErfBI2587.7430878925893` ã-0.00002138929488749056` te I-1 + ã0.00004277858977498112` teM

H1.7248` + pL - 1.5681` Hte + ulage - ΑL + 0.2205` Hte + ulage - ΑL2 +

23376.179655759614` ã0.00002138929488749056` H-te-ulageL I-1 + ã0.00002138929488749056` ulageM
I1.7248` I1 + ã0.00002138929488749056` H2 te+ulageLM + I-1 + ã0.00002138929488749056` teM

I-1 + ã0.00002138929488749056` Hte+ulageLM pM Η4M �
J 2 ,Ite + ulage - Α + 1.7150278872001417`*^-17 te H-2 + Cosh@

0.00004277858977498112` Hte - ulageLD + Cosh@0.00004277858977498112`
Hte + ulageLDL + ulage Η42 Sinh@0.00002138929488749056` ulageD2 Σf

2MNFN

The probability density function of the random variable "life span" for

former-smokers is the product of the hazard-rate evaluated at time of

death  and  the  survival  function  evaluated  at  time  of  death,  equation

[6.7],

[6.7]
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The probability density function of the random variable "life span" for

former-smokers is the product of the hazard-rate evaluated at time of

death  and  the  survival  function  evaluated  at  time  of  death,  equation

[6.7],

[6.7]

ftf = htf gf

which can be obtained by substitution. 
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Evluation of the Economic Impact of California's Tobacco Control Program: A Dynamic Model 
Approach--Appendix 3 : Parameter Estimates for the Mortality, Morbidity, Health Status and 
Expenditure Models.

�

                                                     Leonard S.Miller
                                                     
                                                     

� Section 1 : The Mortality Model.

See Appendix 2 for the specification of the mortality model and for the method used

to estimate the parameters of the model.The order of estimation of the mo9rtality

model’ s parameters is as follows : the never smoker parameters are estimated first;

then, the current smoker’ s parameters are estimated, given the never smoker’ s parame-

ter estimates; finally, the single former smoker parameter, the standard deviation of

the former smoker’ s variance is estimated, given the never smoker’ s and the current

smoker’ s parameters.Table 1 presents the full information (for never smokers) and

limited information (for current and former smokers) maximum likelihood estimates of

the parameter estimates for the mortality model.Figure 1 illustrates the survival

model, given its estimates.Figure 1 depicts the probability of survival for men with

six different smoking histories : (1, tan) a current - smoker 2 packs per day; (2,

lime) a current - smoker 1 pack per day; (3, blue) a former - smoker, 20 years, 1

pack per day; (4, green) a current - smoker, 1/2 pack per day; (5, purple) a former -

smoker, 10 years, 1 pack per day; and (6, red) a never - smoker.One of the products

of the mortality model is the estimation of the parameters of the tobacco - exposure

index which is used to represent the smoking history of individuals.Figure 2 illus-

trates the model’ s tobacco - exposure index for current and former smokers with

habits of ½ and 2 packs a day.Expected index measures summarize an individual’ s smok-

ing history in the morbidity, health status, and cost models to follow.

Table1.Parameter Estimates for Mortality Model

Parameter Estimate Stdev t - value Source

Never - Smokers Η1 1.5681 .0787 19.917 a.

Η2 0.2205 .0114 19.275

Current - Smokers Η3 0.1107 0.0111 9.951 b.

Γ1 = Exp@Β1D Β1 - 21.5052 0.113 - 190.2

Νc0 - 1.7248 0.183 - 9.405



Σc = Exp@Β2D Β2 - 27.1608 0.182 - 149.3

Former - Smokers Η4 0.0394 0.00796 4.950 c.

Σf = Exp@Β3D Β3 - 9.891 10989.8 - 0.0009

a.= mathematica files//Twinsnev3.nb  ; 

b.= mathematica files//Twinscur61.nb; 

c.= mathematica files//Twinsfor31.nb

� Figure 1 : Probability of Survival, Given Age and Smoking History 
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8Decades of age>17--Males 2.3 to 7. decades<

Probability of Survival for Males vs.Decades after age 17

(Source=Twinsfor31.nb)

The order of the survival curves Figure 1 from bottom to top, evaluated at age 77 (6

decades), is as follows : 

   orange     = current - smoker 2 packs per day

   lime       = current - smoker 1 pack per day

   teal blue  = former - smoker, 30 years, 1 pack per day

   green      = current - smoker, 1/2 pack per day

   light blue = former - smoker, 30 years, 1 pack per day

   dark blue  = former - smoker, 20 years, 1 pack per day

   purple     = former - smoker, 10 years, 1 pack per day

   red        = never - smoker

� Figure 2: Tobacco-Exposure, Current and Former smokers (20 years), ½ and 2 packs/day
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�

Figure 2: Tobacco-Exposure, Current and Former smokers (20 years), ½ and 2 packs/day
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Tobacco Exposure Index for Males vs.Decades of age after age 17

The order is Figure 2, from bottom to top, is as follows : 

Evaluated at age 77 (6 decades), from bottom to top :

      purple        = former - smoker, 10 years, 1 pack per day

dark blue     = former - smoker, 20 years, 1 pack per day

light blue    = former - smoker, 30 years, 1 pack per day

green         = current - smoker, 1/2 pack per day

lime          = current - smoker 1 pack per day

orange        = current - smoker 2 packs per day

� Section 2.  Models of the Probability of being Currently Treated for Two Classes of Smoking Caused 
Diseases.

Section 2 presents parameter estimates in the models to predict current treatment

status  (within  a  year)  for  smoking  caused  diseases.We  have  separated  the  smoking

caused diseases into groups based on their comparable relative odds ratios.The group

labeled LC5 has a relative odds ratio of around ten—the relative odds of a smoker

being currently treated for an LCF disease is ten times the relative odds for a never

- smoker being treated.The group labeled CHD5 has a relative odds ratio of around

two.Table 2 lists the ICD - 9 codes for the two groups.
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� Table 2 : Smoking Caused Diseases with their ICD - 9 designations.

Disease Group             Disease Name and ICD - 9 

  CodeClass 1 : LC5       lung cancer (162),  laryngeal cancer (161),               

                          chronic obstructive pulmonary disease (491 - 2, 496)

  

      Class 2 : CHD5       atherosclerosis/aortic aneurysm (440 - 441, 444),           

                           bladder cancer (188),cerebrovascular disease(430 - 438),

                           with sequelae : hemiplegia and hemiparesis (342), 

                           coronary heart disease (410 - 414, 427 - 428),

                           with sequelae : cardiomyopathy and congestive heart 

                           failure (425), esophageal cancer (150), kidney 

                           cancer (189), oral cancer (140 - 141, 143 - 149),

                           other arterial disease, buerger’ s disease (443.1),           

                           peripheral vascular disease (443.9), 

                           pancreatic cancer (157), and stomach cancer (151)

The probability of being currently treated in any year for each class is specified by

the respective equations, 

ProbLC5 = CDF[NormalDistribution[0, (Exp[j1 curr + j2 form]) 1/2], (Β0 + Β1 Age + Β3

toxc + Β4 toxff + Β5 toxfu)]

ProbCHD5 = CDF[NormalDistribution[0, (Exp[j1 curr + j2 form]) 1/2], (Β0 + Β1 Age + Β2

Age2 + Β3 toxc + Β4 toxff + Β5 toxfu)]

where CDF is the normal distribution function;

curr is 1 if a current smoker, 0 otherwise;

form is 1 if a former smoker, 0 otherwise;

age is measured as decades after age 17;

toxc is the expected toxin exposure index level of the

current smoker;

toxff is the expected toxin exposure index level of the

former smoker at the time he stopped smoking; and

toxfu is the expected toxin exposure index level of the

former smoker in decades after quitting.Table 3 presents parameter estimates for the

LC5 model and Table 4 presents parameter estimates for the CHD5 model.
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� Table3:  Parameter Estimates for the Current Annual Treatment of LC5 Diseases (Source  719200lc55.nb)

Variable        Parameter     Estimate      Standard Error     t - value

Current smoker

 in var         j1            - 0.214        0.184              - 1.163 

Former smoker

 in var         j2            - 0.034        0.208              - 0.164 

 

Constant        Β0            - 3.349        0.272             - 12.314 

Age in 

decades >17     Β1              0.200        0.0489               4.091 

toxc            Β3              0.0637       0.00905              7.040

toxff           Β4              0.0839       0.0345               2.435 

toxfu           Β5            - 0.00978      0.0360             - 0.273

 (Source  719200lc55.nb)

� Figure 3:  The probability of annual current treatment  (that is, being treated within a year) for LC5, given age and smoking 
behavior. (Source:/Male Diseases/lc5graphsfinal55.nb)
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� Bottom to top (evaluated at 6 decades after age 17):
       never-smoker, (red)
       former-smoker, 10 yr, 1 pk/day (purple)
       former-smoker, 20 yr, 1 pk/day (dark blue)
       former-smoker, 30 yr, 1 pk/day (light blue)
       current-smoker, 1/2 pk day  (green)
       current-smoker, 1 pk/day  (lime)
       current-smoker, 2 pks/day  (tan)

� Table4:  Parameter Estimates for the Current Annual Treatment of CHD5 Diseases 

Variable        Parameter     Estimate      Standard Error     t - value

Current smoker

 in var         j1            - .128        0.165              - 0.781 

Former smoker

 in var         j2            - .113        0.184              - 0.618

 

Constant        Β0            - 3.925       0.417             -  9.409

Age in

decades >17     Β1              0.805       0.172                4.669 

Age-squared     Β2             -0.0544      0.0177

toxc            Β3              0.022       0.00725              7.0402 

toxff           Β4              0.0315      0.0208               2.435 

toxfu           Β5             -0.0034      0.0215             - 0.273

(Source : 8252004 chd54.nb)
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� Figure 4: The probability of annual treatment for CHD5, given age and smoking behavior
.
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Bottom to top Hevaluated at 7 decades of smoking historyL :

never - smoker HredL
former - smoker, 10 yr, 1 pk � day HpurpleL
former - smoker, 20 yr, 1 pk � day HblueL
former - smoker, 30 yr, 1 pk � day Hlight blueL
current - smoker, 1 � 2 pack � day, HgreenL
current - smoker, 1 pack � day, HlimeL
current - smoker, 2 packs � day, HtanL
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� Section 3: Models of Self-Reported Poor Health Status

Self-Reported poor-health status is modeled as an ordered probability model.

Health* = (Β0 + Β1 age + Β3 toxc + Β4 toxff + Β5 toxfu) + ¶

where ¶ ~  N[0, Exp (j1 curr + j2 form)]

where  Health* is the latent index of poor health status and (in the discussion

below) Health*^ is the expected value of the latent index of poor health status;

The parameters Μ1 and Μ2 (in Table 4) are boundary values of the latent index of self-

reported poor-health status between good and fair and between fair and poor health

status, respectively; 

The probability of excellent, good, fair, and poor health are given by:

CDF[-Health*^], 

CDF[Μ1-Health*^]- CDF[-Health*^], 

CDF[Μ2-Health*^]- CDF[Μ1-Health*^], 

and 1- CDF[Μ2-Health*^], respectively. 

� Table 5:  Parameter Estimates for the Poor Health Status model

Variable          Parameter    Estimate    Standard Error     t-value

Current smoker 

  in variance       j1         -0.129       0.0711            -1.81

Former smoker 

in variance         j2        -0.136        0.0755            -1.795

Constant            Β0        -0.425        0.0581            -7.315 

Age (in decades

>17)                Β1         0.244        0.0165            14.815 

Toxc                Β3         0.0349       0.00326           10.688 

Toxff               Β4         0.0228       0.0123             1.851

Toxfu               Β5        -0.00425      0.0102            -0.415

Boundary values 

between good 

and fair           µ1          1.438        0.0416            34.542

Boundary values 

between  fair 

and poor           µ2          2.452        0.0699            35.068

(Source:/home/len/mathematica files/Male poor health/7232004ph3.nb)
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� Figure 5: Latent Index of Poor Health Status as a function of age and smoking history

�
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8Latent index of poor health status--Males<

� Graphics �

Latent Index of Poor Health Status

Bottom to Top (evaluated 7 decades after average onset of smoking age (17)

           red = never - smoker

           purple = former - smoker, 10 years

           dark blue = former - smoker, 20 years

           light blue = former - smoker, 30 years

           green = current smoker, 1/2 pack/day

           lime = current smoker, 1 pack/day

           tan = current smoker, 2 packs/day

 (Source: poorhealthgraphs3.nb)
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� Figure 6A: Probability of self-reported excellent health as a function of age and smoking history   (Source: poorhealthgraphs3.nb)
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� Graphics �

Probability of self-reported excellent health vs decades after age 17

       red=never-smoker

       purple=former-smoker, 10 years

       dark blue=former-smoker, 20 years

       light blue=former-smoker, 30 years

       green=current smoker, 1/2 pack/day

       light green=current smoker, 1 pack/day

       orange=current smoker, 2 packs/day

� Figure 6B: Probability of self-reported good health as a function of age and smoking history   (Source: poorhealthgraphs3.nb)
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� Graphics �

Probability of self-reported good health vs decades after age 17

       red=never-smoker

       purple=former-smoker, 10 years

       dark blue=former-smoker, 20 years

       light blue=former-smoker, 30 years

       green=current smoker, 1/2 pack/day

       light green=current smoker, 1 pack/day

       orange=current smoker, 2 packs/day

� Figure 6C: Probability of self-reported fair health as a function of age and smoking history   (Source: poorhealthgraphs3.nb)
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� Graphics �

Probability of self-reported fair health vs decades after age 17

       red=never-smoker

       purple=former-smoker, 10 years

       dark blue=former-smoker, 20 years

       light blue=former-smoker, 30 years

       green=current smoker, 1/2 pack/day

       light green=current smoker, 1 pack/day

       orange=current smoker, 2 packs/day
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� Figure 6D: Probability of self-reported poor health as a function of age and smoking history   (Source: poorhealthgraphs3.nb)
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Probability of self-reported poor health vs decades after age 17

       red=never-smoker

       purple=former-smoker, 10 years

       dark blue=former-smoker, 20 years

       light blue=former-smoker, 30 years

       green=current smoker, 1/2 pack/day

       light green=current smoker, 1 pack/day

       orange=current smoker, 2 packs/day

� Section 4: Annual Health Care cost models as functions of dynamic smoking variables .

� Parameter Estimates for Expected Medical Expenditures for Current LC5 Treatment

Since current-treatment is determined by hospital ICD-9 codes, and since all cur-

rently treated respondents have either hospital stays or have had laboratory work

done, currently-treated respondents all have positive expenditures.  The cost for LC5

treatment was estimated with the determinants of the logarithm of annual expenditures

for respondents with LC5 treatment.  Only treatment for LC5 mattered.  Log expendi-

tures equaled 7.847.  The t value was 62.6.  The smearing coefficients for retransfor-

mation40,  calculated  by  smoking  status,  were:  never-smokers’  smearing  coefficien-

t=1.0138;  current-smokers’  smearing  coefficient=3.366;  and  former-smokers’  smearing

coefficient=3.326.  

Log@expenditureD = HΒ0 L + ¶

where ¶~ NA0, Σ2E

:ParameterTable ®
"" "Estimate" "SE" "TStat" "PValue"

"Constant" 7.84688 0.12542 62.5652 0
,

RSquared ® 0, AdjustedRSquared ® 0, EstimatedVariance ® 2.7685>
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� Table 6: Parameter Estimates of the Expected Logarithm of Medical Expenditures for Current Treatment of LC5

Variable  Parameter   Estimate   Sta Error     t - value   Smoking Status   

                                                                   Y = Smearing               

                                                                       Coefficient

Constant    Β0        7.847      0.125         62 .6       Never    1 .0138 

                                                           Current  3 .366 

                                                           Former   3 .326

� Figure7A: Expected medical expenditure on males who were treated within the year for LC5 (Source:/male 
expenditures/7232004explc52.nb)
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� Graphics �

Bottom to top  (at 6.4 decades after mean initiation time (17 years)) :

  never - smoker (red)

  former - smokers, (purple) 

  current - smokers, (light green)
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� Parameter Estimates for Expected Logarithm of Medical Expenditures for CHD5 Treatment

The CHD5 cost model estimated the determinants of the logarithm of annual expendi-

tures for respondents with CHD5 treatment.  Health expenditures were found to be a

function of ever-smoker status and the expected latent index of poor health status.

Note that the expected poor health status model, which was estimated with persons not

currently treated, was here used with the people currently treated for CHD5 to obtain

an expected value.  As seen above, the expected latent index of poor health status is

a function of tobacco exposure.   The more exposure the higher the expected poor

health status, the higher expected CHD5 expenditures.  The never-smoker’s smearing

coefficient equaled 2.918, the current-smoker’s smearing coefficient equaled 3.397,

and the former-smoker’s smearing coefficient equaled 2.830.

Log@expenditure expenditure > 0D = Β0 + Β1 ever + Β2 healthstar + ¶

:ParameterTable ®

"" "Estimate" "SE" "TStat" "PValue"

"Constant" 7.81761 0.217024 36.0219 0

"Eversmoker -0.307497` 0.1624249 -1.8932 0.059

"Health*^ 0.42511 0.199207 2.13401 0.033

,

RSquared ® 0.0109, AdjustedRSquared ® 0.0076`, EstimatedVariance ® 2.326,

� Table7:Parameter Estimates for Expected Medical Expenditures for Current Treatment of CHD5

Variable      Parameter  Estimate   Sta Error     t - value   Smoking Status   

                                                                   Y = Smearing               

                                                                       Coefficient

Constant        Β0       7.8176     0.2170        36.02       Never    2.918

Eversmoker 

Status          Β1      -0.3075     0.1624        -1.893      Current  3.3970 

health*^        Β2       0.4251     0.1992         2.134      Former   2.830
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� Figure 7B: Medical Expendiutre of males annually treated for CHD5 (Source:/male expenditures/7232004expCHD52.nb)
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� Graphics �

Bottom to top  (at 7. decades after mean initiation time (17 years)) :

  former - smoker, 10 yr, 1 pk/day (purple) 

  former - smoker, 20 yr, 1 pk/day ( blue) 

  current - smoker, 1/2 pk day  (darker green)

  former - smoker, 30 yr, 1 pk/day (light blue) 

  current - smoker, 1 pk/day  (lime)

  never - smoker (red)

  current - smoker, 2 pks/day  (tan)
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� Parameter Estimates for Expected  Medical Expenditures for men who are not currently treated for smoking caused diseases.  

A two part model was used to estimate the health care expenditures for respondents

who were not currently treated.  The first part, a model of the probability of any

health care expenditure, was estimated as a Probit model with exponential heteroge-

neous variance.  The propensity was specified as a function of age, expected poor

health status, and indicators of current or former smoking status.  Controlling for

the expected value of the latent index of poor health status, the smoking status indi-

cators are demand parameters.  Only the age and poor health status parameters were

significant.  The second model of the two part model is a model of the logarithm of

the level of positive expenditures.  It was specified like the probability model.

Former-smoker status, age (measured in decades greater than 17 years of age) and poor

health status contributed positively to these expenditures.  The never-smoker’s smear-

ing  coefficient  equaled  4.246,  the  current-smoker’s  smearing  coefficient  equaled

3.594, and the former-smoker’s smearing coefficient equaled 3.289.

E[Medical Expenditures] = 

(CDF[NormalDistribution[0, Exp[j1 curr + j2 form],

Β0 + Β1 Age + Β2 Health*^ + Β3 curr + Β4 form])*

Exp[Γ0 +  Γ1 Age + Γ2 Ehealthstar + Γ3 curr + Γ4 form])*Y

� Table8a:Parameter Estimates for Probability Medical Expenditures Greater Than Zero for Not Currently Treated (NCT)

Variable         Parameter   Estimate   Standard Error   t - value

Current smoker 

 in variance      j1         0.2851      1 .0849          0.263 

Former smoker 

in variance       j2       - 0.5178      0.851          - 0.609 

Constant          Β0         0.5772      0.196            2.952 

Age (in decades 

> 17 years)       Β1         0.1184      0.0867           1.366 

Health*^          Β2       - 0.01543     0.322          - 0.0479 

Current smoker

  status          Β3       - 0.1204      0 .432         - 0.279 

Former smoker

  status          Β4       - 0.03287     0 .420         - 0.0783
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� Figure 8: Illustration of Prob. of Medical Expenditure for NCT(Source:7232004probexpNCTtheoryadj.nb)
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� Graphics �

Note : The health effects from smoking do not influence the probability of any expendi-

tures for persons who are NCT.

   

� Graphics �

Log@expD = Β0 + Β1 curr + Β2 form + Β3 aage + Β4 healthstar + ¶

where ¶~ NA0, sig2E

:ParameterTable ®

"" "Estimate" "SE" "TStat" "PValue"

"Constant" 5.34852 0.18854 28.3682 0

"Current" -0.10996 0.13019 -0.8446 0.398

"Former" 0.11245 0.06081 1.84927 0.064

"AdjAge" 0.15451 0.08675 1.78122 0.075

"Healthstar" 0.44798 0.31135 1.43885 0.150

RSquared ® 0.0494, AdjustedRSquared ® 0.0484, EstimatedVariance ® 2.2208
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� Table8b:Parameter Estimates for Log Medical Expenditures for Not Currently  Treated, Given Medical Expenditures Greater 
Than Zero

Variable       Parameter    Estimate      Standard Error     t-value   Y=

                                                                      Smearing                                                                                                              

                                                                      Coefficient

Never                                                                 4.246

Current                                                               3.594

Former                                                                3.289

Constant       Γ0           5.3485         0.1885            28.37

Age (in 

decades >17)   Γ1           0.1545         0.1302            -0.845 

Health*^       Γ2           0.4480         0.0608             1.849 

Current        Γ3          -0.1100         0.0867             1.781 

Former         Γ4           0.1125         0.3113             1.439

� Illustration of results (Source : male expenditures/expectedsmokingnducedNCTexp2theoryadj.nb)
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� Graphics �

Expected smoking attributable medical expenditures for NCT males in 1987 dollars.

 Bottom to top  (evaluated at 7 decades of smoking):

    current smoker,  2 pk/day  (orange)

    current smoker, 1 pk/day  (lime)

    current smoker, 1/2 pk/day  ( green)

    former smoker, 10yr, 1 pk/day(purple)

    former smokers,20 yr, 1pk/day (blue)

    former smoker, 30yr,1pk/day(light blue),
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Expected smoking attributable medical expenditures for NCT males in 1987 dollars.

 Bottom to top  (evaluated at 7 decades of smoking):

    current smoker,  2 pk/day  (orange)

    current smoker, 1 pk/day  (lime)

    current smoker, 1/2 pk/day  ( green)

    former smoker, 10yr, 1 pk/day(purple)

    former smokers,20 yr, 1pk/day (blue)

    former smoker, 30yr,1pk/day(light blue),

    

    

   

�  Expected Total  Medical Expenditures, given one is alive
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(Source:Expected Smoking Induced Med Exp.nb)

Evaluated at 7.2 decades after the mean smoking initiation age (17 years))

Bottom to Top:

former smoker 10 yr, 1 pk/day (purple)  

    never smoker (red)  

former smoker, 20 yr, 1 pk/day (blue)

former smoker, 30 yr, 1 pk/day (light blue)

        current smoker 1/2 pk/day (green)

        current smoker 1 pk/day  (light green)

        current smoker 2 pks/day (orange)
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Evaluated at 7.2 decades after the mean smoking initiation age (17 years))

Bottom to Top:

former smoker 10 yr, 1 pk/day (purple)  

    never smoker (red)  

former smoker, 20 yr, 1 pk/day (blue)

former smoker, 30 yr, 1 pk/day (light blue)

        current smoker 1/2 pk/day (green)

        current smoker 1 pk/day  (light green)

        current smoker 2 pks/day (orange)
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Evaluation of the Economic Impact of California' s Tobacco Control Program : A Dynamic 
Model Approach-- Appendix 4 :  The Evaluation of TCP through Simulations with Computer 
Experimental Design.

�

Leonard S. Miller

� Background

We have estimates of the age specific smoking initiation and smoking cessation rates  in California over the 1990-1999 period,
and estimates of these rates in the US as a whole.  Additionally, we have adjusted these rates so that they are equal to the Califor-
nia  rates  in  1989.   These  rates  provide factual  and  counterfactual  smoking behavioral  relationships  in  California  over  the
1990-1999 period in the presence of and in the absence of California's Tobacco Control Program (TCP).   However, in fact, the
consequences of smoking, in terms of medical resources attributable to smoking, cases of smoking attributable diseases, health
status, person years of life saved, and the value of years of life saved, take a life time to be revealed.  So, to estimate the value
generated by California's TCP we need to estimate the full life consequences to California residents operating with smoking
behaviors obtained with and without California's TCP.   

We estimated these results by simulating the life-time outcomes for  California's 1990 residents twice, once using the observed
smoking initiation and quitting rates and once using the adjusted national smoking initiation and quitting rates.  We then com-
pared the outcomes from the two simulations and attributed the estimated difference to California's Tobacco Control Program.
The basic information for this evaluation is: (1) a description of the California population, a sample, describing the age and
smoking behavior of its residents in the base year 1990; (2) age specific estimates of the smoking initiation and quit rates over the
decade of the nineties; (3) models to estimate probabilities of relevant events--death, disease,  health status, and costs (given
disease status) in the simulations, and random processes to convert the probabilities into events determining the calculation of the
comparative simulated outcomes.  We seek to estimate the distribution of the population's simulated outcome arising from the
different smoking conditions and the random processes.  However, owing to the large standard errors when the TCP evaluation is
based directly on the California 1990 tobacco sample, we adopted a cell-replication design to represent that sample. The purpose
of this appendix is to explain how we went about obtaining results from this comparative simulation design.  

The following notation will help provide structure to the argument: Xs denotes a vector of the relevant characteristics of individu-
als in the sample describing the California population in the base year of the simulations; Y[s] denotes an outcome over the
simulation based on sample observations;  w[s] denotes the number of people in the population represented by sample observa-
tion s; and  Ns is the number of observations in the sample.  If the sample were used as the basis for comparing the simulations,
the  expected  value of the  outcome Y[s]  is  estimated by Ybar[s].   The  estimate of the  variance  of Ybar[s]  is  estimated by
IS2M

Ybar
@sD.   We can calculate  Y[s], but how do we estimate Ybar[s]? We can calculate S2for the population from the sample,

but how do we estimate S2
Ybar@sD?    In more detail, then, a principal purpose of this appendix is to address these questions

efficiently and by addressing  questions efficiently I mean for the calculation effort expended--that is, how do we create minimum
variance estimates of the distribution of outcome in the population.



� A Computer Experiment

Our strategy is to reformulate the information in the sample into a designed computer experiment and to estimate the answers
sought from the experiment.  Then, to transfer the knowledge back to the sample, which is then used to estimate the distribution
of outcome in the population (Santner, Williams, Notz, 2003).  To accomplish this, we construct a design representation of the
population as described by the sample.  We partition the  space describing the relevant population characteristics into Nc disjoint
cells.  Then we represent the individuals in each cell with a prototypical individual with characteristics Xi, i=1,...Nc.   Since any
sample member will be subjected to the random processes required by  simulations, understanding the distribution of outcome
resulting from these processes requires replications of each prototypical individual in each cell i.  Let J[i] denote the number of
replications in cell i.  The term w[i] is the number of people in the population represented by cell i.  It is estimated by counting up
the weights attached to the sample members who would occupy cell  i.   SYbar@X @iDD  is the standard deviation of the average

outcome score for cell i.  It is estimated by  

SYbar@X @iDD = Úi=1
Nc HY@X@iDD - Ybar@X@iDDL2 � HJ@iD HJ@iD - 1LL.

Make J[i] simulations, calculate Ybar[X[i]] and IS2M
Ybar

@X @iDD.  The product of w[i] and  IS2M
Ybar

@X @iDD  estimates the variance of

the outcome score in the population derived from cell i.  

The  term SqrtAÚi=1
Nc w@iD IS2M

Ybar
@X@iDDE is  the  estimate of the  total standard  deviation of the  outcome score  in the

population represented by the designed computer experiment.  If C denotes the total number of simulations to be made in the
experiment, one for each replication in the design,  how many replications should be made in each cell so as to minimize the
estimate of the variance in the distribution of outcome in the population?

Theorem: On the efficient allocation of replications in a computer experiment.  
The efficient allocation of C replications across the Nc cells follows from choosing the number of replications for each

cell, J[i], according to cell i's fraction of the total standard deviation of the outcome score in the population.  That is, 

J[i] = C  w@iD  S
` @iD � Úi=1

Nc w@iD S
`@iD.

Proof:
Since each cell i is represented by a single replication's description Xi , we can suppress the dependence of outcome on

characteristics.    The estimate of the average and variance of the population outcome from cell i is given by equations [1] and [2]:

[1]

Ybarin Population = â
i=1

Nc

Hw@iD Ybar@iDL � â
i=1

Nc

w@iD

[2]

IS2M
in Population

= â
i=1

Nc

w@iD IS2M
Ybar

@iD

where:

Ybar[i] = Új=1
J@iD Y@i, jD � J@iD;

  S2@iD = Új=1
J@iD HY@i,jD-Ybar@iDL2

-1+J@iD .; and

  
  IS2M

Ybar
@iD = S2@iD /J[i]
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where:

Ybar[i] = Új=1
J@iD Y@i, jD � J@iD;

  S2@iD = Új=1
J@iD HY@i,jD-Ybar@iDL2

-1+J@iD .; and

  
  IS2M

Ybar
@iD = S2@iD /J[i]

To simplify the exposition, assume S2@iD is estimated independent of the J[i] determination process.  For example, a two step
estimation of IS2M

Ybar
@iD is made.  First, with a relatively small sample, S2@iD is estimated for the purpose of  understanding how

replications should be allocated to cells, and then IS2M
Ybar

@iD  is estimated with the J[i] replications for the purpose of furthering

the outcome analysis.

The Lagrangian of the variance minimization expresses the objective function, the variance arising in the Nc cells, subject to the
conditions that the sum of the replications in all the cells equals the number of calculations C and that the sum of the weights in
the cells equals the population size.  The Lagrangian is as follows:

L = Úi=1
Nc w@iD S2@iD

J@iD + Λ I-C + Úi=1
Nc J@iDM + Μ I-P + Úi=1

Nc w@iDM
The optimization problem is to minimize L over the choice of the set J[i].

Taking the partial derivative of the Lagrangian with respect to J[i], and setting it to zero yields the first of the first order condi-
tions for the estimate of the variance of outcome,

@3D Λ -
w@iD S@iD2

J@iD2 = 0

Taking the partial derivative of the Lagrangian with respect to the first constraint, Λ, and setting it to zero yields the second of the
first order conditions for the estimate of the variance of outcome,

[4]  -C + Úi=1
Nc J@iD=0

and taking the partial derivative of the Lagrangian with respect to the second constraint, Μ,  and setting it to zero yields the third
of the first order conditions for the estimate of the variance of outcome,

[5]  -P + Úi=1
Nc w@iD = 0.

Equation [3] actually represents Nc first order conditions of the form 

[6]    Λ =
S2@iD w@iD

J@iD2  ,

which all have the following solution for the optimal number of replications, J[i],
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@7D SolveAJ@iD2 - H1 � ΛL S2@iD w@iD � 0, J@iDE

::J@iD ® -
S2@iD w@iD

Λ

>, :J@iD ®
S2@iD w@iD

Λ

>>
Accepting the positive valued solution with a positive square root yields equation [8], 

[8]    J@iD =
w@iD S@iD

Λ
. 

Now incorporate the second of the first  order conditions, equation [4],   Úi=1
Nc J@iD = C,  into the analysis.  Substituting the

solution for J[i] into equation [4], obtains equation [9],

@9D - C + â
i=1

Nc w@iD S@iD
Λ

� 0

which can be solved for Λ ,

@10D

Λ = â
i=1

Nc w@iD S@iD
C

Substitute this solution for Λ  back into the solution for J[i] (equation [8]) and we have proved our theorem,

[11]  J@iD = C I w@iD S@iD � Úi=1
Nc w@iD S@iDM.
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� An algorithm to determine the optimal number of representations in a cell.

The estimation of J[i] requires estimates of w[i] and S
`
[i].  By adding up the weights of every one in the sample represented by

cell i we estimate w[i].  That is,

[12]  w[i] = Új=1
J@iDw[s|s Ε i].

Take a reasonable, but small number of  replications for every cell.  Perhaps 30.   Conduct the simulations for each cell and from
the resulting outcome measures, estimate S[i] with the use of equations [1] and [2].  

Based on these  estimates for w[i]  and S[i],  for  every i,  compute w@iD S@iD  and  Úi=1
Nc w@iD S@iD,  and then the

fraction of the contribution of cell i to the standard deviation in the total outcome, fJ[i], is given by equation [13].  

[13]  fJ[i] = 
w@iD S@iD

Úi=1
Nc w@iD S@iD .

Having decided to make  C calculations and hence requiring C replications, the number for cell i is simply the product of fJ[i] and
C,

[14]  J[i] = fJ[i] C.

� How many calculations, C, should be made?

Let us assume that at the end of the analysis we desire a coefficient of variation (Σ/Μ)  to have an estimated value (S/Ybar) equal

to Α.   The coefficient of variation,  estimated by JIS2M
in Population

N1�2
/ Ybarin Population, where these terms are given by

equations [2] and [1], respectively.

From estimates of equation [2], 

[15]  HS`2Lin Population= Úi=1
Nc Iw@iD S2@iD � J@iDM,

substitute in the value of J[i ] from equation [11]].  The variance in the population is given by equation [16],

[16]  IS2M
in Population

    = Úi=1
Nc Iw@iD S2@iDM � w@iD S@iD

Úi=1
Nc w@iD S@iD C  .

Simplify, and then solve for C.

C  =  IÚi=1
Nc I w@iD S@iDMM2 � IS2M

in Population

The coefficient of variation, denoted by Α,   is estimated by HS`Lin Population  /Ybar in population

the [17]    C  = KÚi=1
Nc I w@iD S@iDM2 � IΑ2 Ybarin Population2 M

� An algorithm to determine the required number of calculations.
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The w[i] values are data and the initial estimates of  S
`
[i]  and  Ybar[i] are obtained from the initial experiment.    Employ-

ing equation [1] yields an estimate of Ybarin Population (=  Új=1
J@iD[w[i] Ybar[i] ).   For a given value of Α,   C is calculated from

equation [17] and distributed among the Nc cells according to equation [14].
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� An analysis of the designed computer experiment.  A transformation of the experiment information into sample knowledge.

At this point assume the computer experiment has been conducted and  we have obtained a vector of average outcomes for the
cells, Ybar[i],  and a vector of the standard deviations in outcome for the cells, SYbar@iD}.  The task now is to transform these

statistics about the computer experiment into knowledge about the sample that can be used to estimate knowledge about the
population.

We relate  the  statistics from the  computer experiment   with a  multiplicative heteroscedastic  regression model.  This  is  the
specification examined in depth by Harvey (1976),  but our formulation is different  because  Harvey had no estimates of the
variance of Ybar[i] and we do.  And, accordingly, our results will differ from his.  The model has the form specified by equation
[18],

[18]  Ybar@iD = X@iD Β + Ε@iD

E[Ε [i] Ε [i]'] =Σ2@iD =
= Exp[Z[i]Γ]=Exp[Γ0] Exp[Z1[i] Γ1] ...Exp[Zp[i]Γp]
= Σ0

2@iD Exp[Z1[i] Γ1] ...Exp[Zp[i]Γp]
= Σ0

2@iD Exp[Z*[i] Γ* ]            
for all i, where:
 X[i] is a row vector, 1 x P, of the P descriptive characteristics of the prototypical member of cell i, 
 Β is a vector of length P, 
 Γ is a vector of length K, and
  Ε [i] is a random variable indicating the  difference between cell [i]'s 
 average outcome and the cell i's expected outcome, given its 
 characteristics, X[i]. 
 
 If MΕ is a vector of the cell's random variables, MYbar is a vector of the cell average outcomes, MX is a Nc by P matrix of the
cell characteristics, relevant to describing Ybar and MZ is a Nc by K matrix of the cell characteristics relevant to describing the
variance in Ybar, then the expected value vector,   variance-covariance matrix, and estimate of the variance-covariance matrix is
given by equations [19a], [19b], and [19c] respectively,

 [19a]     E[MΕ ]=0 ;  and
 
 
 [19b]   E[MΕ MΕ ']=
 
      Exp@Z@i = 1DΓ],                      0 ,     ...    ,                            0  

                          0 , Exp@Z@i = 2DΓ],     ...   ,                             0                   

       S =[                                                                                                   ].
                           0,                       0 ,  ...    ,  Exp@Z@i = NcD ΓD

           
[19c]     M IS2M

Ybar
 =  Y   =

 
       IS2M

Ybar
[X[i=1]], 0                        ,  ...   ,                          0  

                   0 ,IS2M
Ybar

[X[i=2]],  ...   ,                          0           

 = [                                                                                                   ].
                   0 ,                         0,  ...    , IS2M

Ybar
[X[i=Nc]] 

Since estimates of the variance are known, generalized least squares provides minimum variance estimates b of Β.
 
 [20]  b = (X[i]' Y-1X[i]) (X[i]' Y-1Y[i]).

 We turn now to the estimation of the Γ coefficients. Based on the estimates b of Β, an observed error in the model for Ybar[i] is
given by
 
 [21]     e[i] = Ybar[i] - X[i] b.
 
 The logarithm of the square of this observed error is the estimate of the variance for an observation, which by the postulated
multiplicative heteroscedastic model, is
 

 [22]    Log[ e@iD2] = Z[i] Γ + Ν[i].
 
 In our case, we have an estimate of this variance,  so equation [21] can be expressed as equation [22],
 
 [23]   Log[ IS2M

Ybar
[ i ]] = Z[i] Γ + Ν[i].

 
 Let c denote the least squares estimator of Γ.  c is given by equation [24],

[24]     c = HZ ' ZL-1Z'  Log[ IS2M
Ybar

[ i ]].

 We now examine the characteristics  of this estimator.   Our analysis is similar to that of Harvey (1976),  though somewhat
simpler  because  the dependent variable, Log[ IS2M

Ybar
[ i ]],  is observed.  From equation [17],  Z[i] Γ = Log Σ2@iD.  After substitut-

ing into equation [23], and solving for the error term, we have equation [25],
 
 [25]     Ν[i] = Log[ IS2M

Ybar
[ i ]]  - ln Σ2@iD= Log [  IS2M

Ybar
[ i ]] / Σ2@iD]

 
Under the assumption that the deviations from the means of a cell are Normal,  Log [  IS2M

Ybar
[ i ]] / Σ2@iD] is distributed as the

natural logarithm of a Chi-Squared distribution with J[i] degrees of freedom divided by J[i] (recall J[i] are the number of observa-
tions in cell [i]) the error term v[i] is so distributed.
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Ybar
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 [25]     Ν[i] = Log[ IS2M

Ybar
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Ybar
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natural logarithm of a Chi-Squared distribution with J[i] degrees of freedom divided by J[i] (recall J[i] are the number of observa-
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The expected value of the Logarithm of a Chi-Squared with one degree of freedom equals -1.27036.  

Integrate@ Log@xD PDF@ChiSquareDistribution@1D, xD, 8x, 0, Infinity<D
-EulerGamma - Log@2D
N@%D
-1.27036

By subtracting the expected value of the error from the constant, c0, and from the error  v[i], we obtain,

@26D E@cD = Γ + HZ' ZL-1 Z' E@Log@v@iDDD
= Γ + HZ' ZL-1 Z' H-1.27036L

which implies

@27D E@c�D = @c - 1.27036 iD =

= Γ + HZ' ZL-1 Z' E@Log@v@iD - 1.27036DD
= Γ

where  i = {1,0,...,0}', of length P.

The variance of a random variable distributed as the logarithm of a Chi-Squared with one degree of freedom has a value

equal to Π2

2
,  which equals 4.9348.

@28D IntegrateA
H Log@xD - H-EulerGamma - Log@2DLL2 PDF@ChiSquareDistribution@1D, xD, 8x, 0, Infinity<E

Π2

2

N@%D
4.9348

The variance of c
�
 is given by equation [29],

[29]  V[c] = V AHZ ' ZL-1 Z ' HZ Γ + v@iDLE

= HZ ' ZL-1 HZ ' V @v@iD]Z) HZ ' ZL-1 

= HZ ' ZL-1 4.9348
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� Applying the cell analysis to the sample

We turn now to use the estimated models to  estimate the mean outcome and its variance, given the sample data..  Let X[s] and
Z[s] describe the relevant model characteristics with a  sample member s.  We wish to forecast the distribution of the average
outcome for sample member s and its variance.  The average outcome forecast for sample member s is given by equation [30], 

[30]  Y
`
bar@sD = X@sD b + Ε@sD,

where Ε [s] is the forecast error.  The Gauss-Markov theorem insures that the minimum variance linear unbiased estimator of the

forecasted average outcome for sample member s , Y
`
bar[s], is given by equation [31],

[31]  Y
`̀
bar@sD = X@sD b .

Let S2
forcast denote an estimate of the variance in the forecast error.  Based on the cell data, we estimate the variance of the

forecast error with equation [32],

[32] S
` 2

forcast error = Úi=1
Nc I-b X@iD + Y

`
bar@iDM2

/(Nc-1).

  The estimate of the  variance of the mean of a sample observation, given X[s], is based on the models estimated and the sample

information.   Let HS`̀
2

LYbar[ s ] represent the estimate of the variance of a forcasted value of Ybar based on sample data.

This variance should be the sum of the  estimated variance of Ybar, given sample data, plus the variance of the forecast error.

The expression for HS`̀
2

LYbar[ s ],  simply combines the predicted value of the estimate of the variance of Ybar and the average

forecast error calculated with equation [32],
 

 [33]  E[ HS`̀
2

LYbar[ s ]]= E[Exp[Z[s] Γ + v[s]] + S
` 2

forcast error

 

 =  E[Exp[Z[s] c
�
  ]] + S

` 2
forcast error  = 
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� An example of a model specification

To illustrate the ideas developed above, we offer an example of a specification for the model presented by equation [18].  The
specification of X[i] might be described by equation [34] :

[34]  X[i] ={1, X1@iD, X1@iD2, X1@iD3, X22@iD, X23@iD, X3@iD, X4@iD, X5@iD<;
Β = 8Β0, Β11, Β12, Β13, Β22, Β23, Β3, Β4, Β5<';

and the individual X elements are defined as follows:
X1=age;
X2={1/0} according as observation is an {ever-smoker in 1990/otherwise};
X22={1/0} according as observation is a {former smoker in 1990/otherwise};
X23={1/0} according as observation is a {current smoker in 1990/otherwise};
X3=start age of a current or former smoker in 1990;
X4=quit age of a former smoker in 1990;
X5=cigarettes smoked per day,Modulo 1/2.

and the specification of the Z might be:
 

[35]    Z[i]= {1, X1[i],  X1[i],  X2[i], X4[ i],  X5[i]} 

and accordingly, Γ = {Γ0,  Γ11, Γ12,  Γ2,  Γ4, Γ5}'.

� The Evaluation of the Program with sample knowledge.

Having estimated the average outcome and its variance for every sample member, the TCP program is then evaluated.  The
outcome in the population is estimated from the sample data with equation [36],

@36D Yin Population = Ús=1
Ns Y

`̀
bar@sD w@sD,

and the variance of the outcome in the population is estimated from the sample data with equation [37],

[37]  IS2M
in Population

= Ús=1
Ns w@sD2 HS`̀2LYbar@sD.

In fact, since we have many different outcomes of interest, a particular one must be choosen to determine the design structure.
We choose years of life saved and the design criteria.
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� Optimum allocation of simulation calculations.

1.  Allocate 30 replications to each cell, generate the simulation outcomes, and estimate the average and variance of these cell
outcomes, Ybar[i] and S2@iD , for each cell.

2.  Compute w[i] for each cell.

3.  Estimate the set {Ji} of replications per cell.

The following algorithm is then implemented to obtain a simulation result. 

� 1.  Model Ybar[i]

� 2.  Model HSLYbar@iD

� 3.  Estimate the average outcomes in the sample, based on cell data.

� 4.  Estimate the variance of the average outcomes in the sample, based on cell data.

� 5.  Estimate the average outcomes in the population, based on sample data.

� 6.  Estimate the variance of the average outcomes in the population, based on sample data.

�  7.  Report the point and interval estimates of the outcomes attributable to TCP.
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� Implementation of the cell-replication design.

In the study at hand, a cell is described with five values in 1990:
X1=age,  range 1 to 90 ;
X2=smoking status 1,2,3;
X3=start age  11 to 22 ;
X4=quit age  20 to 90 ; and
X5=smk packs/day  0 to5/2, in units of 1/2 packs per day,  0-1/2, 1/2-1,...
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