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 Abstract 
 Early  characterization  of  drug  targets  associated  with  disease  can  greatly  reduce  clinical 
 failures  attributed  to  lack  of  safety  or  efficacy.  As  single-cell  RNA  sequencing  (scRNA-seq) 
 of  human  tissues  becomes  increasingly  common  for  disease  profiling,  the  insights  obtained 
 from  this  data  could  influence  target  selection  strategies.  Whilst  the  use  of  scRNA-seq  to 
 understand  target  biology  is  well  established,  the  impact  of  single-cell  data  in  increasing  the 
 probability  of  candidate  therapeutic  targets  to  successfully  advance  from  research  to  clinic 
 has  not  been  fully  characterized.  Inspired  by  previous  work  on  an  association  between  genetic 
 evidence  and  clinical  success,  we  used  retrospective  analysis  of  known  drug  target  genes  to 
 identify  potential  predictors  of  target  clinical  success  from  scRNA-seq  data.  Particularly,  we 
 investigated  whether  successful  drug  targets  are  associated  with  cell  type  specific  expression 
 in  a  disease-relevant  tissue  (cell  type  specificity)  or  cell  type  specific  over-expression  in 
 disease  patients  compared  to  healthy  controls  (disease  cell  specificity).  Analysing  scRNA-seq 
 data  across  30  diseases  and  13  tissues,  we  found  that  both  classes  of  scRNA-seq  support 
 significantly  increase  the  odds  of  clinical  success  for  gene-disease  pairs.  We  estimate  that 
 combined  they  could  approximately  triple  the  chances  of  a  target  reaching  phase  III. 
 Importantly,  scRNA-seq  analysis  identifies  a  larger  and  complementary  target  space  to  that  of 
 direct  genetic  evidence.  In  particular,  scRNA-seq  support  is  more  likely  to  prioritize 
 therapeutically  tractable  classes  of  genes  such  as  membrane-bound  proteins.  Our  study 
 suggests  that  scRNA-seq-derived  information  on  cell  type-  and  disease-specific  expression 
 can  be  leveraged  to  identify  tractable  and  disease-relevant  targets,  with  increased  probability 
 of success in the clinic. 
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 Introduction 

 Drug  discovery  begins  with  the  identification  of  candidate  targets,  drug-binding  molecules 
 whose  modulation  is  hypothesized  to  be  useful  for  the  treatment  of  disease  [1].  The  discovery 
 and  development  of  a  novel  drug  for  a  candidate  target  progresses  in  the  following  steps: 
 target  validation,  compound  screening  and  lead  identification,  characterization  of  mechanism 
 of  action,  indication(s)  selection,  safety  and  efficacy  clinical  trials,  and  finally,  in  successful 
 cases,  regulatory  approval.  Development  of  a  single  new  drug  takes  an  average  of  12-15 
 years  and  costs  (including  concurrent  program  failures)  are  estimated  to  range  from  900 
 million  –  2.6  billion  USD  per  success  [2,3].  A  drug  discovery  program  can  fail  at  each  step 
 between  early  research  to  regulatory  approval,  and  it  is  estimated  that  in  >90%  of  cases 
 failures  can  be  attributed  to  suboptimal  target  selection  for  a  given  disease,  resulting  in  safety 
 or  efficacy  issues  [4].  Together,  these  observations  point  to  the  need  to  improve  the  strategies 
 and  the  data  used  in  early  stages  of  drug  discovery  to  support  the  selection  of  candidate 
 therapeutic targets, to increase the likelihood of clinical success. 

 Single-cell  RNA  sequencing  (scRNA-seq)  data  is  a  particularly  promising  source  of  evidence 
 for  target  selection,  providing  cell-level  resolution  of  molecular  profiles  in  disease-relevant 
 tissues.  Single  cell  technologies  have  already  been  applied  extensively  to  characterize  disease 
 biology,  in  emerging  diseases  like  COVID-19  [5,6],  cancer  [7–10],  and  common  complex 
 diseases  across  tissues  [11–14].  The  rapidly  growing  body  of  disease-relevant  scRNA-seq 
 data  has  already  begun  to  inform  the  development  of  novel  diagnostics  and  cell-targeting 
 precision  therapies  [15].  This  led  us  to  ask  to  what  extent  information  on  cell  type  specific 
 expression can boost the selection of promising drug targets. 

 Retrospective  analysis  of  known  drug  targets  has  been  used  to  identify  features  predictive  of 
 target  success.  Notably,  such  analyses  have  shown  that  targets  linked  to  genetic  variants 
 associated  with  the  relevant  disease  are  twice  as  likely  to  reach  clinical  approval  as  targets 
 with  no  genetic  support  [16–18].  These  studies  greatly  impacted  decision-making  in  biotech 
 and  pharmaceutical  industries.  Out  of  428  newly  FDA-approved  drugs  from  2013  to  2022, 
 271  (63%)  are  backed  by  direct  or  indirect  human  genetic  evidence  [19,20].  Even  though 
 establishing  whether  this  influenced  their  discovery  or  development  phases  is  difficult,  250 
 out of 271 genetics-backed drugs had publicly accessible genetic support before approval. 

 Given  this  precedent,  in  this  work  we  used  retrospective  analysis  to  identify  potential 
 predictors  of  target  clinical  success  from  scRNA-seq  data.  We  investigated  two  cell  type 
 specific  expression  modes  that  are  commonly  used  in  scRNA-seq  disease  analysis  and  can 
 support  target  discovery.  The  modes  include  cell  type  specific  expression  in  a 
 disease-relevant  tissue  (hereafter  cell  type  specificity  )  and  cell  type  specific  over-expression 
 in  disease  patients  compared  to  healthy  controls  (hereafter  disease  cell  specificity  ).  We  used  a 
 uniform  workflow  to  identify  cell  type  specific  and  disease  cell  specific  target-disease  pairs 
 across  30  complex  diseases  in  13  disease-relevant  tissues  using  the  CZ  CellxGene  Discover 
 database  [21].  We  then  evaluated  how  scRNA-seq  supported  target-disease  associations 
 correlate  with  target  success  in  clinical  trials,  benchmarking  against  direct  genetic 
 associations  as  reported  from  the  Open  Targets  platform  [22].  We  found  that  scRNA-seq 
 support  significantly  increased  the  odds  of  clinical  success  for  target-disease  pairs  and 
 identified  a  complementary  target  space  to  that  of  direct  genetic  evidence.  These  results 
 highlight  the  value  of  scRNA-seq  data  as  a  key  resource,  complementary  to  genetics,  to 
 increase probability of clinical success in drug development. 
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 Results 

 Definition of scRNA-seq support for targets 
 As  a  cause  or  consequence  of  disease,  pathology  arises  when  cells  of  a  particular  type 
 develop  abnormal  traits  within  a  disease-relevant  tissue.  Safe  and  effective  therapies  should 
 precisely  target  these  aberrant  cells,  without  eliciting  on-target  toxicities  in  other  cells  and 
 tissues.  Given  this  need,  scRNA-seq  data  can  support  target  prioritization  by  identifying 
 genes  expressed  in  a  cell  type  specific  manner  in  tissue  from  healthy  and  diseased 
 individuals.  We  aimed  to  assess  whether  cell  type  specific  genes,  as  identified  by  scRNA-seq 
 analysis,  are  more  likely  to  be  targets  of  clinically  successful  drugs.  We  considered  diseases 
 for  which  scRNA-seq  data  was  available  via  the  CZ  CellxGene  Discover  database  [21].  We 
 defined  a  disease-relevant  (DR)  tissue  for  each  disease  term.  Of  the  58  disease  terms  in  the 
 CellxGene  database,  30  terms  were  retained  for  association  analysis,  based  on  availability  of 
 data  from  disease-relevant  tissue  and  overlap  with  OpenTargets  disease  annotation  terms  (see 
 Supplementary  Table  1  for  a  complete  list  of  diseases  and  reasons  to  exclude  from  analysis). 
 The  most  prevalent  diseases  were  lung  and  immune  disorders  (Figure  1A).  For  each  disease 
 term,  we  collected  gene  expression  count  matrices  and  coarse  cell  type  labels,  harmonized 
 using  the  Cell  Ontology  [23]  (Figure  1B,  Supplementary  Figure  1,  see  Methods),  for 
 disease-relevant  tissue  samples  from  healthy  and  diseased  individuals  (Supplementary  Table 
 2). 

 We  next  defined  two  classes  of  scRNA-seq  supported  genes  for  target  discovery:  (1)  cell  type 
 specific  genes  in  healthy  disease-relevant  tissue  (  cell  type  specific  )  and  (2)  genes  specifically 
 over  expressed  in  a  cell  type  in  tissue  from  disease  patients,  compared  to  healthy  tissue 
 (  disease  cell  specific  )  (Figure  1C).  We  reasoned  that  drugs  targeting  cell  type  specific  genes 
 inhibit  expansion  and  function  of  normal  cells  acquiring  aberrant  phenotypes  in  disease.  For 
 example,  the  GLP-1  receptor,  targeted  by  commonly  used  anti-diabetic  drugs,  is  normally 
 expressed  in  pancreatic  beta  cells,  which  become  dysfunctional  in  disease  [13].  Conversely, 
 drugs  targeting  disease  cell  specific  genes  suppress  aberrant  gene  programmes  directly.  For 
 example,  inflammatory  bowel  disease  patients  are  treated  with  antibodies  targeting  the  tumor 
 necrosis  factor  (TNF)  which  is  over-expressed  in  regulatory  T  cells  and  other  immune 
 subtypes in disease [24]. 

 Enrichment of clinically successful targets in genes with scRNA-seq support 
 For  each  disease,  we  identified  cell  type  specific  and  disease  cell  specific  genes  with  highly 
 variable  gene  (HVG)  selection  and  differential  expression  (DE)  analysis,  aggregating  mRNA 
 counts  across  cell  types  and  donors  (Figure  1D,  see  Methods).  With  this  analysis  across  30 
 diseases,  we  annotated  33654  gene-disease  (G-D)  pairs  as  cell  type  specific  and  60851  G-D 
 pairs  as  disease  cell  specific  (Supplementary  Figure  2).  To  associate  scRNA-seq  support  with 
 clinical  success,  we  extracted  information  about  targets  of  drugs  approved  or  in  trial  from  the 
 Open  Targets  platform  [1,22,25]  (n  =  2358  drugs  for  which  the  studied  diseases  are  an 
 approved  or  investigational  indication).  Across  diseases,  we  annotated  2925  G-D  pairs  as  safe 
 (passed  phase  I),  of  which  1646  pairs  where  also  effective  (passed  phase  II),  and  601  pairs 
 were also approved (passed phase III) (Supplementary Figure 2, Supplementary Table 3). 

 We  then  computed  the  odds  of  clinical  success,  with  or  without  support  from  scRNA-seq  data 
 (Figure  1C,  see  Methods).  Of  note,  our  analyses  are  disease-specific:  we  count  successful 
 G–D  pairs  with  corresponding  scRNA-seq  support  from  analysis  of  healthy  and  diseased 
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 individuals  in  the  disease-relevant  tissue.  For  example,  a  gene  that  is  found  to  be  cell  type 
 specific in esophagus is not considered as having scRNA-seq support for pulmonary fibrosis. 

 To  enumerate  the  space  of  possible  G-D  pairs,  we  multiplied  the  number  of  diseases 
 considered  (N=30)  with  a  “universe”  of  genes.  We  define  four  different  universes:  all 
 protein-coding  genes  (N=19620),  representing  the  space  of  genes  that  are  typically  analysed 
 in  scRNA-seq  data;  genes  that  are  antibody-tractable  (N=12527)  or  small  molecule-tractable 
 (N=6550)  based  on  Open  Targets  tractability  assessment,  representing  genes  that  are  tractable 
 by  any  therapeutic  agent;  finally,  genes  already  targeted  by  therapies  in  clinical  trial  for  any 
 indication  (known  drug  targets,  N=936),  representing  demonstrably  druggable  proteins 
 (Supplementary Figure 3). 

 Out  of  2925  target-indication  pairs  which  passed  at  least  phase  I,  858  were  prioritized  as 
 either  cell  type  specific  or  disease  cell  specific  by  scRNA-seq  analysis  (Figure  2A). 
 Considering  protein-coding  genes,  antibody-  and  small  molecule-tractable  genes,  cell  type 
 specific  and  disease  cell  specific  G-D  pairs  with  scRNA-seq  support  were  always 
 significantly  enriched  in  targets  of  safe,  effective,  or  approved  drugs  (Figure  2B, 
 Supplementary  Table  4).  Out  of  2840  protein-coding  G-D  pairs  passing  phase  I,  356  (12%) 
 were  cell  type  specific  in  the  DR  tissue  (OR=2.47,  p-value  =  3.57e-46)  and  594  (20%)  were 
 disease  cell  specific  (OR=2.34,  p-value=4.43e-64).  The  enrichment  of  disease  cell  specific 
 genes  in  clinically  successful  targets  was  the  highest  amongst  antibody-tractable  genes.  When 
 restricting  the  analysis  to  known  drug  targets,  only  disease  cell  specific  genes  were 
 significantly  enriched  in  effective  and  approved  targets  (Figure  2B).  This  might  indicate  that 
 specific  expression  in  the  disease-relevant  tissue  is  already  implicitly  used  by  drug  discovery 
 programmes  for  selecting  targets  that  progress  to  clinical  development.  Combining  both 
 classes  of  scRNA-seq  support  (cell  type  and  disease  specific  genes)  led  to  significantly  higher 
 association  with  success  in  phase  I  and  effectiveness  (phase  II)  than  each  class  individually, 
 especially for protein coding and small molecule tractable targets (Figure 2B). 

 Comparison between scRNA-seq supported and genetic supported targets 
 We  compared  genes  supported  by  scRNA-seq  with  genes  associated  to  the  disease  by  human 
 genetics  data,  using  the  Open  Targets  direct  genetic  association  score  [22,26].  Throughout  the 
 manuscript,  we  refer  to  genes  that  are  prioritized  by  either  genetic  association,  cell  type 
 specificity  or  disease  cell  specificity  as  genes  with  “omic  support”.  Consistent  with  previous 
 findings  [16,18],  genetic-supported  genes  were  strongly  associated  with  clinical  success 
 (Figure  2B,  OR  for  approved  targets  =  5.94,  p-value  =  1.8e-11).  Cell  type  and  disease 
 specific  protein-coding  genes  were  as  likely  to  be  targets  of  drugs  passing  phase  I  and  II  as 
 those  that  have  genetic  support.  In  contrast,  for  targets  that  are  clinically  approved  (i.e.  passed 
 phase  III),  genetic  evidence  gave  stronger  prediction.  The  identification  of  genetic  evidence 
 as  a  predictor  of  clinical  success  may  have  biased  recent  programs  toward  development  of 
 genetically  supported  drugs,  noting  that  only  a  subset  of  the  drugs  under  consideration  here 
 were approved in the last 10 years (Supplementary Figure 4). 

 We  observed  several  differences  between  scRNA-seq  supported  targets  and  targets  supported 
 by  genetics.  Firstly,  scRNA-seq  supports  a  larger  number  of  successful  target-disease  pairs. 
 Amongst  the  G-D  space  of  safe  targets  (2925  G-D  pairs),  29.3%  are  scRNA-seq  supported, 
 while  only  2.3%  are  directly  supported  by  genetics  (Figure  2A).  Secondly,  we  found  that 
 different  sources  of  omic  evidence  support  distinct  target  spaces:  only  24%  of  safe  G-D  pairs 
 targeted  with  genetic  support  overlap  with  either  kind  of  scRNA-seq  evidence  (Figure  2C). 
 We  tested  for  association  between  clinical  success  and  support  from  both  genetic  and 
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 scRNA-seq,  but  due  to  the  limited  overlap,  this  analysis  likely  lacked  sufficient  statistical 
 power  to  detect  significant  differences  compared  to  using  genetics  alone  (Supplementary 
 Figure  5A).  Thirdly,  genetic  and  scRNA-seq  support  were  predictive  of  clinical  success  in 
 different  classes  of  tractable  targets  (Supplementary  Figure  5B).  Genetic  support  increased 
 chances  of  approval  up  to  20-fold  for  kinases  and  catalytic  receptors  but  was  notably  less 
 predictive  of  success  than  scRNA-seq  support  for  other  classes,  such  as  transporters  and 
 rhodopsin-like  GPCRs.  These  classes  of  genes  show  high  tolerance  to  loss-of-function 
 mutations  (Supplementary  Figure  5C),  whereas  it  has  been  reported  that  genes  associated 
 with  GWAS  variants  are  under  strong  evolutionary  constraints  [27].  Furthermore,  at  the 
 compound-level  we  found  that  drugs  targeting  scRNA-seq  supported  genes  are  approved  or 
 in  trial  for  a  significantly  higher  number  of  indications,  compared  to  not  supported  targets 
 (Adjusted  R  2  =  0.167;  p  =  2.086e-7,  see  Methods)  (Supplementary  Figure  6;  Supplementary 
 Table  5).  Genetic  association  was  not  associated  with  significantly  higher  number  of 
 indications per drug. 

 We  also  observed  significant  differences  when  considering  the  genes  with  omic  support  that 
 are  not  already  in  clinical  development  (unexplored  supported  genes).  A  large  fraction  of 
 scRNA-seq  supported  genes,  and  especially  cell  type  specific  genes,  are  considered  tractable 
 by  therapeutic  agents  (Figure  2D).  Across  all  diseases  considered,  on  average  77%  of  cell 
 type  and  disease  cell  specific  genes  are  antibody  tractable,  against  51%  of  genes  supported  by 
 genetic  association  (t-test  p-value:  5.9-e08).  Genetic-supported  genes  showed  a  slightly 
 higher  average  fraction  of  small  molecule  tractable  genes  (40%  against  31%,  t-test  p-value  = 
 0.02),  although  this  was  mainly  driven  by  a  few  diseases  (Supplementary  Figure  7A).  This 
 indicates  that  scRNA-seq  support  prioritizes  genes  with  therapeutic  potential,  especially 
 membrane-bound  proteins.  This  difference  between  genetic  and  scRNA-seq  support  could  at 
 least  in  part  be  explained  by  differences  in  evolutionary  constraints:  antibody  tractable  genes 
 have  significantly  higher  tolerance  to  loss-of-function  than  non-tractable  genes,  while  small 
 molecule  tractable  genes  are  significantly  more  constrained  (Supplementary  Figure  7B).  This 
 could  be  due  to  stronger  evolutionary  constraints  on  the  sequences  of  proteins  with  small 
 molecule  binding  pockets,  as  compared  to  larger,  flatter  surfaces  of  protein-protein 
 interaction interfaces [28]. 

 Robustness of association of scRNA-seq support and clinical success 
 We  next  tested  the  robustness  of  association  with  clinical  success  to  several  parameters  used 
 for  the  definition  of  genes  with  scRNA-seq  support.  Firstly,  in  our  scRNA-seq  analysis 
 workflow  we  do  not  test  for  differential  expression  across  all  genes,  but  we  pre-select  highly 
 variable  genes  before  each  comparison  (see  Methods),  as  per  standard  practice  for  DE 
 analysis  [29].  To  independently  quantify  the  impact  of  feature  selection  before  DE  analysis, 
 we  computed  enrichment  of  successful  targets  considering  only  genes  selected  as  highly 
 variable  genes  for  each  disease  scRNA-seq  dataset.  DE  testing  led  to  significant  enrichment 
 of  successful  targets  also  within  selected  HVGs,  although  with  lower  odds-ratios 
 (Supplementary  Figure  8A).  This  suggests  that  both  HVG  selection  and  DE  testing  on 
 scRNA-seq data enrich for successful targets. 

 Next,  we  explored  the  relationship  between  cell  type  specificity  and  differential  expression 
 fold  change  between  cell  types  and  disease  conditions.  Estimated  fold  changes  in  gene 
 expression  between  cell  types  are  higher  than  those  observed  in  the  comparison  between 
 disease  and  healthy  states  within  cell  types  (Supplementary  Figure  8B).  Notably,  genes 
 significantly  over-expressed  in  a  cell  type  at  lower  log-fold  changes  are  often  ubiquitously 
 highly  expressed,  while  those  at  higher  fold  changes  are  genuinely  cell  type  specific 
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 (Supplementary  Figure  8C)  and  more  likely  to  be  successful  targets  (Supplementary  Figure 
 8D,  left).  Conversely,  most  disease  cell  specific  genes,  including  successful  clinical  targets, 
 are over-expressed in disease patients at low fold changes (Supplementary Figure 8D, right) 

 According  to  our  definition,  disease  cell  specific  genes  include  both  those  over-expressed  in 
 disease  within  one  or  a  small  subset  of  cell  types  and  genes  over-expressed  across  multiple 
 cell  types.  Since  the  latter  category  may  also  be  identifiable  through  bulk  expression  analysis 
 on  whole  tissue,  we  explored  whether  both  tissue-level  and  cell  type-level  DE  genes 
 contribute  to  the  enrichment  of  clinically  successful  targets.  To  explore  this,  we  aggregated 
 scRNA-seq  counts  to  estimate  bulk  tissue  expression  per  donor  and  compared  this  to  genes 
 specifically  pinpointed  through  cell  type-aware  DE  analysis  (Supplementary  Figure  9A).  74% 
 of  disease  cell  specific  successful  targets  (passing  at  least  phase  I)  could  be  identified  only 
 with  cell  type-level  DE  analysis  (Supplementary  Figure  9B).  In  other  words,  single  cell  rather 
 than  bulk  expression  data  is  required  to  identify  most  disease  cell  specific  genes.  Both 
 tissue-level  and  cell  type-level  disease  cell  specific  genes  were  significantly  more  likely  to  be 
 targets  of  successful  drugs  (Supplementary  Figure  9C).  The  OR  was  slightly  higher  for 
 tissue-level  disease  markers  compared  to  those  only  detectable  with  cell  type-aware  analysis. 
 This  is  expected,  since  bulk  expression  profiling  methods  have  been  incorporated  in  target 
 discovery  pipelines  for  many  years,  whilst  single  cell  data  has  only  become  available  more 
 recently.  In  addition,  we  confirmed  that  drug  targets  are  more  strongly  enriched  in 
 up-regulated  genes  than  down-regulated  genes  (Supplementary  Figure  9A).  This  aligns  with 
 the  fact  that  890  (73.0%)  of  1219  drugs  past  phase  I  and  474  (69.5%)  of  the  695  drugs  in 
 phase  III  or  phase  IV  trials  for  the  diseases  in  this  analysis  are  categorized  as  inhibitors, 
 antagonists, degraders, blockers and/or negative regulators of their targets. 

 We  note  that  our  analysis  may  be  constrained  by  a  lack  of  consistently  curated  cell  type 
 annotations  across  various  scRNA-seq  disease  datasets.  We  use  cell  type  labels  based  on  the 
 Cell  Ontology  [23],  leading  to  broad  and  possibly  inconsistent  cell  type  annotations.  The 
 preferred  annotation  strategy  in  several  data  integration  studies  which  re-use  public 
 scRNA-seq  data  is  to  cluster  gene  expression  profiles  in  different  datasets  de  novo  and 
 manually  re-annotate  clusters  [30,31].  We  hypothesised  that  accurate  cell  type  annotations 
 could  further  improve  the  ability  to  prioritize  cell  type  specific  genes  for  target  discovery.  We 
 explored  this  hypothesis  through  analysis  of  three  lung  diseases  (pneumonia,  cystic  fibrosis 
 and  pulmonary  fibrosis)  for  which  curated  fine-grained  annotations  from  data  integration 
 projects  are  available  in  the  extended  Human  Lung  Cell  Atlas  (eHLCA)  dataset  [30] 
 (Supplementary  Figure  10A).  We  computed  cell  type  specific  and  disease  cell  specific  genes 
 using  Cell  Ontology-based  annotations  and  eHLCA  fine  annotations  and  compared  the 
 enrichment  of  successful  targets  between  these  two  gene  sets.  The  gene  sets  with  scRNA-seq 
 support  testing  on  fine  or  coarse  annotations  was  largely  overlapping  (Supplementary  Figure 
 10B).  The  fraction  of  recovered  successful  targets  and  the  odds  of  clinical  success  were 
 comparable,  with  slightly  increased  odds  of  success  by  using  fine  annotations  to  detect  cell 
 type  specific  genes  (Supplementary  Figure  10C).  For  disease  specific  expression  the  odds  of 
 success  were  slightly  decreased  with  fine  grained  annotation,  possibly  because  in  this  case 
 differences  between  health  and  disease  may  manifest  as  changes  in  cell  type  proportions 
 rather than within-cluster differential gene expression. 

 Target analysis in diseases with scRNA-seq support 
 Considering  the  24  diseases  with  at  least  one  target  with  an  approved  drug,  genetic  support 
 was  significantly  associated  with  clinical  success  (targets  of  effective  drugs)  for  6  indications, 
 cell  type  specificity  for  10  indications  and  disease  cell  specificity  for  9  indications  (Figure 
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 3A,  Supplementary  Figure  11,  Supplementary  Table  6).  We  considered  technical  factors 
 influencing  the  variability  across  diseases  in  targets  supported  by  scRNA-seq.  Firstly,  the 
 total  number  of  supported  targets  correlates  with  the  number  of  cell  types  considered  in 
 differential  expression  analysis  (Supplementary  Figure  12A).  For  disease  cell  specific  genes, 
 the  number  of  cell  types  that  can  be  tested  is  significantly  dependent  on  the  number  of  disease 
 patients  in  the  scRNA-seq  cohort  (R  2  =  0.39,  p-value  =  1.87e-11).  Indeed,  we  found  that  with 
 a  larger  patient  cohort  we  detected  more  disease  cell  specific  genes  (Supplementary  Figure 
 12B).  Moreover,  when  the  datasets  included  at  least  10  disease  patients,  a  greater  proportion 
 of  the  supported  genes  were  successful  targets  (Supplementary  Figure  12C).  These  results 
 support  the  notion  that  larger  patient  cohorts  can  improve  accuracy  of  detection  of  disease 
 cell  specific  targets.  Conversely,  cell  type  specific  genes  appear  less  dependent  on  the 
 numbers of donors for the disease-relevant tissue dataset (Supplementary Figure 12B). 

 As  an  exemplar  disease  with  high-quality  scRNA-seq  data,  we  examined  the  characteristics 
 of  supported  targets  for  systemic  lupus  erythematosus  (SLE).  SLE,  commonly  referred  to  as 
 lupus,  is  a  chronic  autoimmune  disease  that  can  affect  various  organs  and  tissues.  SLE  is 
 characterised  by  auto-antibody  production  that  triggers  inflammation  and  tissue  damage. 
 Current  therapy  options  for  SLE  include  broad  acting  non-steroidal  anti-inflammatory  drugs, 
 corticosteroids,  and  immunosuppressants  such  as  methotrexate  and  azathioprine  to  control  the 
 immune  system's  activity.  In  addition,  newer  cell-targeted  biologics  like  belimumab,  which 
 targets  B-lymphocyte  stimulator  protein  encoded  by  TNFSF13B  ,  have  been  approved  for 
 treating certain patients with SLE [32,33]. 

 In  SLE  many  genes  have  been  associated  to  the  disease  through  genetic  analyses 
 (Supplementary  Figure  2).  However,  these  genes  are  not  significantly  enriched  for  effective 
 drug  targets  (Figure  3A).  Disease  cell  specific  genes  point  to  drugs  with  systemic 
 immuno-suppressant  effects  such  as  paracetamol  (targeting  FAAH,  PTGS2  ),  inhibitors  of 
 DNA  replication  (targeting  polymerases  and  tubulin  genes),  and  B  cell  stimulators  (targeting 
 TNFSF13B,  CD40LG  )  (Figure  3B).  Cell  type  specific  known  targets  include  genes  acting  in 
 disease-relevant  cells,  such  as  toll-like  receptors  which  are  involved  in  autoantibody 
 production  in  B  cells  [34].  The  unexplored  supported  genes  prioritized  by  different  omic 
 support  classes  are  all  enriched  in  immune-function  gene  sets.  However,  we  noticed  that 
 different  data  prioritizes  genes  with  distinct  molecular  function  (Supplementary  Figure 
 13A-C).  For  example,  different  support  classes  prioritize  different  genes  involved  in 
 interferon  gamma  signalling:  genetic  association  prioritizes  genes  encoding  for  DNA  binding 
 proteins  and  transcription  factors  in  the  pathway,  including  SMAD  and  IRF  transcription 
 factors;  disease  cell  specific  genes  are  induced  by  interferon  signalling  downstream  in  the 
 pathway,  including  IFIT  and  ISG  genes.  Cell  type  specific  genes  include  chemokines  and 
 membrane bound receptors (e.g.  KLRK1,  CMKLR1,  IL2RB  )  (Supplementary Figure 13D). 

 As  a  second  example,  we  examined  supported  targets  in  pulmonary  emphysema.  Pulmonary 
 emphysema  is  a  condition  characterized  by  the  gradual  destruction  of  the  air  sacs  (alveoli)  in 
 the  lungs,  resulting  in  enlarged  and  rigid  air  spaces  that  impair  gas  exchange  [35].  When 
 pulmonary  emphysema  is  coupled  with  inflammation  of  the  airways,  the  two  conditions  are 
 known  as  chronic  obstructive  pulmonary  disease  (COPD).  The  primary  therapy  options 
 include  bronchodilators,  such  as  short-  or  long-  acting  agonists  of  beta-2-adrenergic  receptors 
 that  cause  the  relaxation  of  airway  smooth  muscles  and  anticholinergic  medications  that 
 inhibit  bronchoconstriction  [36].  Oral  phosphodiesterase  protein  family  inhibitors  such  as 
 Roflumilast  are  similarly  used  to  manage  smooth  muscle  relaxation,  vasodilatory,  and 
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 bronchodilatory  effects  in  patients  with  pulmonary  emphysema  and  COPD.  Inhaled 
 corticosteroids may be used as an add-on therapy to reduce local inflammation. 

 In  our  analysis,  known  drug  targets  were  not  supported  by  direct  genetic  evidence  (Figure 
 3A).  Given  that  pulmonary  emphysema  is  a  stage  of  a  progressive  lung  disease,  the  absence 
 of  robust  genetic  evidence  could  be  attributed  to  limited  size  of  patient  cohorts  at  this  specific 
 stage  of  disease.  Despite  single  cell  data  being  available  only  from  3  patient  samples, 
 multiple  safe,  effective,  and  approved  therapeutic  targets  were  prioritised  using  our  analysis 
 as  cell  type  specific  in  the  disease-relevant  tissue  (lung)  (Figure  3C).  For  example, 
 angiotensin  II  receptor  (encoded  by  AGTR1  gene)  antagonist  Sacubitril/Valsartan  is  an 
 effective  drug  in  patients  with  pulmonary  hypertension/emphysema  [37],  despite  it  being 
 predominantly  used  for  the  treatment  of  cardiac  diseases.  Even  though  AGTR1  lacked  genetic 
 association  with  lung  disease  or  function,  our  analysis  suggests  that  AGTR1  is  specifically 
 expressed  in  lung  smooth  muscle  cells  and  fibroblasts  in  scRNA-seq  data  (Supplementary 
 Figure  14).  AGTR1  presents  an  example  of  targets  where  single  cell  data  analysis  might 
 enable interpretability of cell type relevance for disease progression. 

 We  also  found  that  for  broad  therapeutics  that  affect  a  family  of  genes,  single  cell  data  could 
 provide  evidence  for  the  most  relevant  family  members  based  on  specificity  of  expression  in 
 the  disease-relevant  tissues.  For  example,  the  non-selective  inhibitor  Roflumilast  targets  all 
 phosphodiesterase-4  genes  (  PDE4A-D  ),  however,  only  PDE4C  shows  selective  expression  in 
 activated  smooth  muscle  cells  and  alveolar  type  2  cells  in  the  lung  (Supplementary  Figure 
 14).  Non-selective  inhibitors  can  cause  multiple  side  effects.  In  the  case  of  Roflumilast, 
 expression  of  PDE4B  and  PDE4D  in  the  sensory  nerves  is  thought  to  be  responsible  for 
 nausea  side  effects  [38,39].  Therefore,  single  cell  data  can  provide  rationale  for  development 
 of  selective  PDE4C  inhibitors  for  the  treatment  of  pulmonary  emphysema  and  other  lung 
 conditions associated with hypertension. 

 Discussion 

 Lack  of  efficacy  and  safety  are  the  leading  causes  for  phase  II  and  III  clinical  trial  failures 
 [40].  Additionally,  a  promising  target  may  fail  to  progress  to  phase  I  because  of  multiple 
 reasons.  These  include  inability  to  establish  a  mechanistic  link  between  target  biology  and 
 indication  (target  validation  failure),  insufficient  promising  chemicals,  and/or  safety  risks 
 found  during  pharmacokinetic  and  early  toxicology  studies  [4].  Taken  together,  all  these 
 different  causes  account  for  the  limited  probability  of  a  candidate  therapeutic  target  and  its 
 cognate  drug  passing  all  stages  of  pre-clinical,  clinical  research,  and  regulatory  approval 
 (2005-2010  industry  average:  5%  [4]).  Data-driven  frameworks  in  drug  discovery  can 
 effectively  mitigate  some  of  these  risks,  as  demonstrated  by  the  use  of  genetics  data  to 
 support  target-disease  associations  [16],  but  attrition  from  target  ID  to  clinic  remains  high  [4]. 
 To  further  increase  chances  of  success,  target  discovery  workflows  increasingly  access 
 additional  information  aggregated  from  pre-clinical  data  resources,  including  data  from 
 animal  models,  over-expression  in  disease-relevant  bulk  tissue  samples,  disease  pathway 
 analyses,  and  other  bioinformatics  resources,  as  exemplified  by  the  Open  Targets  Platform 
 [1].  Characterizing  the  potential  impact  and  biases  of  different  data  sources  for  target 
 credentialing pipelines is critical to push new technologies to translational applications. 

 Single-cell  technologies,  along  with  the  growing  availability  of  large,  shared  single-cell 
 datasets  on  diseases  and  healthy  controls  [21]  have  opened-up  unprecedented  opportunities  to 
 understand  target  biology  at  cellular  resolution  across  disease  areas  and  in  diverse  patient 
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 populations.  Single-cell  RNA-seq  has  been  applied  to  investigate  pathways  driving  onset  and 
 progression  of  diseases  [41–43],  to  understand  the  mechanism  of  action  of  different 
 therapeutics  [44,45],  and  to  discover  biomarkers  for  patient  stratification  [46].  This  suggests  a 
 remarkable  depth  and  breadth  of  information  extractable  from  scRNA-seq  datasets  that  could 
 support drug discovery. 

 The  goal  of  this  study  was  to  measure  how  much  using  single-cell  RNA  sequencing  data 
 from  disease-relevant  tissues  can  improve  the  chances  of  success  for  therapeutics  by 
 systematically  identifying  connections  between  targets  and  diseases.  By  aggregating  data  for 
 30  diseases  affecting  13  tissues,  we  found  that  candidate  target  genes  supported  by 
 scRNA-seq  evidence  have  approximately  three  times  the  chances  to  lead  to  clinically 
 successful therapies (Figure 2B). 

 The  association  between  scRNA-seq  support  and  target  clinical  success  is  in  line  with  the  fact 
 that  human  diseases  are  typically  tissue  and  cell  type  specific  [47].  For  example,  tissue  and 
 cell-type  specific  eQTLs  are  enriched  for  disease-associated  SNPs  [48–50].  Given  the  typical 
 timeframes  of  drug  development,  it  is  highly  unlikely  that  any  of  the  targets  considered  have 
 been  initially  prioritized  or  validated  using  single-cell  transcriptomics.  While  it  is  possible 
 that  other  types  of  tissue-level  transcriptomic  data  have  driven  decisions  in  target 
 development,  we  do  not  expect  these  instances  to  significantly  bias  the  results  of  our  analysis 
 on  cell  type  specific  expression.  Furthermore,  we  found  that  scRNA-seq  supported  targets 
 were  more  likely  to  pass  phase  I  and  II  than  reaching  approval.  It  is  possible  that  cell  type 
 specificity  is  a  better  indicator  of  low  toxicity  than  broad  efficacy,  although  this  question 
 remains to be further explored. 

 We  compared  targets  prioritized  by  scRNA-seq  with  those  prioritized  by  genetic  evidence, 
 which  has  been  highlighted  as  an  important  predictor  of  clinical  success  [16,18].  Consistent 
 with  previous  results,  for  the  diseases  and  target  sets  included  in  this  analysis,  we  observed  a 
 strong  and  statistically  significant  association  between  direct  genetic  support  for 
 target-disease  pairs  and  clinical  development  success  (Figure  2B).  Previous  work  has 
 highlighted  that  targets  supported  by  human  genetic  data  are  more  likely  to  be  successful 
 [16].  It  is  likely  that  this  has  led  the  pharmaceutical  industry  to  allocate  greater  resources  to 
 development  of  drugs  for  these  targets  and  has  therefore  created  a  bias  amongst  the  targets  in 
 clinical  development.  However,  we  also  find  that  direct  genetic  association  support  exists 
 only  for  a  subset  of  target-disease  pairs  with  drugs  in  clinical  development,  and  scRNA-seq 
 support  exists  for  a  larger  set  of  target-disease  pairs,  with  few  targets  supported  by  both  types 
 of  omic  evidence  (Figure  2A;  Supplementary  Figure  4).  These  complementary  sets  of  targets 
 have  distinct  molecular  and  druggability  characteristics  (Figure  2C,  Supplementary  Figure 
 5B).  For  example,  we  observed  that  genetic  support  tends  to  prioritize  evolutionarily 
 conserved  genes  (Supplementary  Figure  5B-C,  Supplementary  Figure  7B),  as  previously 
 reported  [27].  Loss-of-function-tolerant  classes  of  druggable  targets,  such  as  GPCRs  and 
 transporters,  are  instead  prioritized  by  cell  type  or  disease  cell  specificity,  although 
 scRNA-seq  data  might  be  biased  towards  other  classes,  such  as  highly  expressed  genes.  We 
 speculate  that  cell  type  specificity  might  prioritize  targets  of  therapies  managing  symptoms  or 
 modulating  disease-relevant  biological  processes  parallel  to  or  downstream  of  genetic 
 causation,  which  are  seldomly  prioritized  by  genetic  analysis  [19,20].  Importantly,  detecting 
 associations  between  genetic  variants  and  disease  requires  data  from  hundreds  to  thousands 
 of  individuals.  In  our  analysis,  association  between  clinical  success  and  scRNA-seq  support 
 was  drawn  from  analysis  of  tissue  from  tens  of  individuals,  and  we  show  that  increasing  the 
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 size  of  the  scRNA-seq  cohort  to  hundreds  of  patients  increases  the  fraction  of  prioritized 
 successful targets even further (Supplementary Figure 12C). 

 In  this  study,  we  considered  two  distinct  patterns  of  cell  type  specific  expression:  cell  type 
 specific  expression  in  disease-relevant  tissue  (  cell  type  specificity  )  and  cell  type  specific 
 over-expression  in  disease-relevant  tissue  from  disease  patients  compared  to  controls  (  disease 
 cell  specificity  ).  Both  classes  of  genes  were  significantly  associated  with  clinical  success  in 
 several  diseases  (Figure  3A).  Cell  type  specific  targets  were  less  dependent  on  technical 
 features  of  the  scRNA-seq  dataset  (Figure  2A,  Supplementary  Figure  12).  This  is  important 
 because  measuring  cell  type  specificity  does  not  require  patient  data,  and  this  could  be 
 computed  systematically  on  open  resources  such  as  the  Human  Cell  Atlas  Data  Portal 
 (  data.humancellatlas.org  ) or the CZ CellxGene database  [21]. 

 When  considering  disease  cell  specific  genes,  we  found  that  both  genes  over-expressed  in 
 disease  within  small  subsets  of  cell  types,  and  genes  over-expressed  at  tissue-level,  contribute 
 to  the  association  with  clinical  success  (Supplementary  Figure  9).  Bulk  transcriptomics 
 methods  have  been  used  for  longer  in  clinical  development  pipelines  and  this  is  reflected  in 
 stronger  associations  with  success,  although  most  disease  cell  specific  successful  targets  were 
 only  identified  with  cell  type-aware  analysis.  Of  note,  in  this  study  we  define  disease  cell 
 specificity  with  naïve  cell  type-level  differential  expression  analysis,  where  technical  effects 
 are  only  partially  mitigated.  We  expect  that  improved  experimental  design  and  statistical 
 methods  to  recover  expression  differences  in  scRNA-seq  in  normal  and  diseased  tissues 
 [51–53]  and  to  distinguish  disease-associated  cell  states  [54–56]  could  further  improve  the  set 
 of target genes and will be highly impactful for target discovery programmes. 

 Our  study  is  not  free  of  limitations.  We  rely  on  the  Cell  Ontology-based  cell  type  labels  [23] 
 provided  by  data  curators  upon  submission  to  the  CZ  CellxGene  Discover  database.  This 
 approach  has  two  primary  drawbacks.  Firstly,  the  Cell  Ontology's  incompleteness  may  result 
 in  labelling  rare  tissue-specific  subpopulations  with  broad  cell  type  terms.  Secondly, 
 inconsistencies  may  arise  as  different  data  curators  use  the  same  term  for  transcriptionally 
 distinct  cells  or  conflicting  terms  for  identical  phenotypes.  While  our  label  harmonization 
 strategy  addresses  the  latter  issue  to  some  extent,  it  introduces  coarser  annotations.  We 
 anticipate  that  these  issues  will  be  mitigated  by  increased  availability  of  expertly  curated  cell 
 type  annotations  across  human  tissues,  and  by  unified  models  for  cell  type  annotation  [57]. 
 These  will  not  only  enhance  the  identification  of  promising  drug  targets  (Supplementary 
 Figure  10)  but  also  facilitate  more  precise  identification  of  disease-relevant  cell  types  and 
 cellular  mechanisms.  Additionally,  our  analysis  encompassed  both  historical  and  active 
 clinical  development  data  for  drug  targets,  for  some  of  which  the  ultimate  outcomes  are  still 
 unknown.  Finally,  we  did  not  account  for  the  similarity  between  indications,  which  is 
 important  when  considering  related  diseases  where  genetic  association  may  be  lacking  for  a 
 specific  indication  (e.g.  pulmonary  emphysema)  but  is  present  for  related  traits  (e.g.  lung 
 function). 

 Looking  forward,  more  sophisticated  analyses  of  cell  atlases  will  boost  further  drug  discovery 
 efforts.  For  example,  analysis  of  drug  target  expression  patterns  across  cell  types  have  been 
 used  to  assess  re-purposing  potential  and  on-target  toxicities  [58].  Methods  to  infer 
 differentiation  trajectories  [59,60],  cell-cell  interactions  [61,62],  regulatory  networks  [63], 
 and  immune  repertoires  [64]  provide  additional  unexplored  space  for  novel  targets. 
 Furthermore,  we  envision  that  high-resolution  spatial  transcriptomics  will  provide  an  added 
 level  of  insight  into  drug  target  relevance  based  on  their  expression  and  disease  tissue  context 
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 [65–67].  Insights  on  cell  and  disease  cell  specific  targets  gained  using  high-throughput 
 genomics  will  inform  the  design  of  next  generation  precision  therapeutics,  for  example 
 antibody-drug  conjugates  or  lipid  nanoparticle-mRNA  vaccines.  Overall,  our  study  provides  a 
 framework  to  assess  the  potential  impact  of  alternative  data  analysis  methods  and  modalities 
 on target discovery. 

 In  summary,  our  work  indicates  that  single-cell  data  can  be  a  valuable  tool  for  guiding  the 
 process  of  drug  target  prioritisation  and  enhancing  our  understanding  of  the  cellular  basis  of 
 safe, effective, and approved treatments for diseases. 
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 Main figures 

 Figure  1:  Single-cell  dataset  selection  and  pre-processing.  (A) Overview  of  diseases  and  tissues 
 in scRNA-seq  dataset. Table  of  disease-relevant  tissue  of  samples  (x-axis)  and disease condition  (y-axis)  for 
 all scRNA-seq  data  considered  in  this  study.  The  number  and  color  of  each  square  indicates  the number 
 of individuals  for  whom scRNA-seq  data  are  available.  The  availability  of  data  from  healthy  individuals 
 is shown  in the  top  row  (disease  condition:  normal).   (B) Illustration  of  selection  and  pre-processing  steps 
 for scRNA-seq  datasets  from  CZ CellxGene Discover database  (DR:  disease-relevant).  (C) Illustration  of 
 rationale  behind  scRNA-seq  support  classes  for  target  discovery:  cell  types  expanding  or  acquiring  aberrant 
 function  in  disease  can  be  targeted  using  cell  type  specific  targets.  Cells  specifically  expressing  aberrant  gene 
 programmes  can  be  targeted  with  disease  cell  specific  targets  (D)  Workflow  for analysis  of  association  between 
 scRNA-seq  support  and  clinical  success. We  identify  cell  type  specific  and  disease  cell  specific  gene-disease 
 pairs  through  differential  expression  analysis  on  pseudo-bulked  data  from  the  disease-relevant  tissue  (1).  Data 
 on  genetic  association  and  clinical  success  of  targets  was  collected  from the  OpenTargets database  (2).  For each 
 omic  support  class,  we  compute  the  odds  ratio  for  the  association  between  clinical  success  (passing  clinical 
 trials) and different classes of omic support (3).   
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 Figure  2:  Association  between  omic-based  evidence  and  target  clinical  success.  (A)  Barplot  of  successful 
 phase  I,  II  and  approved  target-disease  pairs  for  30  diseases,  colored  by  type  of  omic  support.  Target-disease 
 pairs  are  grouped  by  the  highest  clinical  phase  reached  by  the  therapeutic  agent.  (B)  Odds  ratio  (x-axis,  in  log10 
 scale)  of  association  between  clinical  success  of  a  target  and  different  sources  of  omic  support  (y-axis).  We  test 
 association  with  safe  targets  (passed  phase  I,  top  row),  effective  targets  (passed  phase  II,  middle  row)  and 
 approved  targets  (passed  phase  III,  bottom  row).  Results  using  different  universes  of  genes  are  shown  in 
 different  columns  (SM:  small  molecule,  AB:  antibody).  For  each  test,  the  numbers  to  the  right  show  the  number 
 of  omic  supported  over  total  successful  targets.  Results  are  shown  considering  gene-disease  (G-D)  pairs  for  30 
 diseases.  The  error  bars  denote  95%  confidence  intervals  of  the  odds  ratio.  Points  in  red  indicate  cases  where  the 
 enrichment  for  successful  targets  was  statistically  significant  (Fisher’s  exact  test  p-value  <  0.05).  The  dotted  line 
 denotes  Odds  Ratio  =  1  (no  enrichment).  (C)  Upset  plots  showing  the  number  of  successful  G-D  pairs  with  omic 
 support  (left  barplot)  and  their  intersection  (top  barplot).  We  show  intersection  for  all  safe,  effective,  and 
 approved  targets.  (D)  Boxplots  showing  the  fraction  of  unexplored  supported  genes  (not  clinically  tested  drug 
 targets,  x-axis)  for  each  class  of  omic  support  (y-axis)  that  are  considered  tractable  based  on  the  Open  Targets 
 tractability  assessment.  Each  point  represents  a  disease.  Odds  ratios  and  95%  confidence  intervals  for 
 association  between  omic  support  and  tractability  are  shown  to  the  right  (considering  all  protein-coding  genes  as 
 universe).  We  distinguish  genes  that  are  antibody-tractable,  small  molecule  tractable,  or  tractable  by  any  class  of 
 therapeutic  (tractable).  The  dotted  line  shows  the  fraction  of  tractable  genes  amongst  all  protein-coding  genes. 
 27  diseases  for  which  at  least  one  gene  had  genetic  association  evidence  are  shown.  In  the  boxplots,  the  center 
 line  denotes  the  median;  the  box  limits  denote  the  first  and  third  quartiles;  and  the  whiskers  denote  1.5x  the 
 interquartile range (IQR). 
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 Figure  3:  Association  between  omic  support  and  clinical  success  stratified  by  disease.  (A)  Odds  ratio 
 (x-axis,  log10  scale)  of  association  between  clinical  success  (effective,  passing  phase  II)  of  a  target  and  omic 
 support  calculated  per  disease  (y-axis).  Results  are  shown  for  24  diseases  with  at  least  one  approved  target. 
 Diseases  are  sorted  by  odds  ratios  for  association  with  genetic  support.  The  gene  universe  used  was 
 protein-coding  targets.  For  each  test,  the  numbers  to  the  right  show  the  number  of  omic  supported  over  total 
 successful  targets.  The  error  bars  denote  95%  confidence  intervals  of  the  odds  ratio.  Points  in  red  indicate  cases 
 where  the  enrichment  for  successful  targets  was  statistically  significant  (Fisher’s  exact  test  p-value  <  0.05).  The 
 dotted  line  denotes  Odds  Ratio  =  1  (no  enrichment).  (B-C)  Supported  drug  targets  for  systemic  lupus 
 erythematosus  (B)  and  pulmonary  emphysema  (C).  The  right  barplot  shows  the  number  of  supported  target 
 genes  that  are  not  known  drug  targets  in  clinical  trial  (unexplored,  including  both  tractable  and  non-tractable 
 genes). In (B) only known targets supported by at least one omic class are shown. 
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 Methods 

 Single-cell RNA-seq data collection from CZ CellxGene Discover platform 
 To  select  a  set  of  diseases  and  scRNA-seq  datasets,  we  downloaded  cell-  and  dataset-level 
 metadata  for  all  H.Sapiens  datasets  from  the  CZ  CellxGene  Discover  database,  using  the 
 cellxgene_census  python  API  (census  version:  2023-07-25)  [21].  Disease-relevant  (DR) 
 tissues  were  manually  annotated  for  the  58  disease  terms  in  the  database.  We  excluded 
 datasets  profiled  with  targeted  scRNA-seq  assays  (BD  Rhapsody),  inDrop  and  STRT-seq.  We 
 further  excluded  fetal  samples,  based  on  Human  Developmental  Stage  Ontology  [68],  where 
 available,  and  by  manual  curation  for  12  datasets  where  stages  were  annotated  as  “unknown”. 
 10 disease terms were grouped into 4 broader terms (Supplementary Table 1). 

 After  curation,  30  disease  terms  were  retained  for  association  analysis.  Reasons  to  exclude 
 diseases  included:  missing  overlapping  disease  terms  in  Open  Targets,  missing  data  from  DR 
 tissue,  data  available  from  less  than  3  donors  with  the  disease,  download  errors  (see 
 Supplementary  Table  1  for  a  complete  list  of  diseases  and  reasons  to  exclude  from  analysis). 
 After  selecting  suitable  datasets,  for  each  disease  we  downloaded  full  transcriptome  gene 
 expression  profiles  for  all  cells  from  the  DR  tissue  from  healthy  donors  and  disease  patients, 
 as  well  as  cell  type  labels  (Cell  Ontology  terms  [23])  and  sample-level  technical  metadata 
 (scRNA-seq assay and suspension type, Supplementary Figure 15). 

 To  ensure  consistency  in  granularity  of  cell  type  annotations  across  studies,  we  implemented 
 a  rollup  procedure  on  the  Cell  Ontology  tree,  by  relabelling  cells  with  parent  terms  if  a  given 
 term  is  a  descendant  of  another  term  in  the  dataset  (see  example  outcome  in  Supplementary 
 Figure  1).  For  each  term,  the  search  for  parent  terms  was  limited  only  to  a  level  of  depth  in 
 the  ontology  tree  given  by  the  total  number  of  ancestors  of  the  term  divided  by  a  factor  of  5. 
 For  example,  if  a  term  had  20  ancestors  in  the  ontology  tree,  we  searched  for  the  4  closest 
 parent  terms  in  the  dataset  for  relabelling.  We  recognize  that  this  step  reduces  the  resolution 
 of  cell  type  annotations,  yielding  broader  and  partially  redundant  annotation  labels.  However, 
 it  mitigates  the  need  for  batch  correction,  clustering,  and  manual  cell  type  annotation  across 
 30  datasets.  We  defined  the  cell  type  labels  used  after  roll-up  as  high-level  cell  type 
 annotations  . 

 Differential expression analysis and extraction of scRNA-seq supported gene-disease pairs 
 We  identified  cell  type  specific  and  disease  cell  specific  genes  for  each  disease  using 
 differential expression (DE) analysis. 

 For  each  disease  dataset,  we  aggregated  cell-level  gene  expression  profiles  summing  counts 
 and  size  factors  (total  counts  per  cell)  by  donor  and  high-level  cell  type  annotations 
 (hereafter,  pseudo-bulks),  following  best  practice  recommendations  for  DE  analysis  on 
 scRNA-seq  data  [69,70].  Only  cell  types  found  in  at  least  3  healthy  donors  (and  3  disease 
 donors  for  disease  cell  specificity  analysis)  were  included  in  DE  testing.  To  identify  cell  type 
 specific  genes,  we  selected  pseudo-bulks  from  healthy  donors  from  the  disease-relevant  tissue 
 and  we  tested  for  DE  between  pseudo-bulks  of  one  cell  type  against  all  other  cell  types.  To 
 identify  disease  cell  specific  genes,  for  each  cell  type  we  tested  for  DE  between  diseased 
 donors  and  healthy  donors.  For  each  test,  we  selected  the  top  5,000  highly  variable  genes 
 amongst  considered  pseudo-bulks,  using  the  method  implemented  in  the  R  package  scran 
 [71].  We  tested  for  differential  expression  between  groups  with  the  edgeR  quasi-likelihood 
 test  [72]  using  the  implementation  in  the  R  package  glmGamPoi  [73].  In  all  tests,  we 
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 modelled  the  number  of  cells  per  pseudo-bulk  as  a  confounder,  as  well  as  suspension  type 
 (cell  or  nuclei)  and  scRNA-seq  assay  where  possible  (when  the  confounder  was  not  perfectly 
 collinear  with  the  disease  label).  After  DE  analysis,  we  obtained  the  effect  size  (log-fold 
 change,  logFC)  and  Benjamini-Hochberg  adjusted  p-values  for  each  tested  gene  in  each 
 tested cell type. 

 We  annotated  a  gene-disease  (G-D)  pair  as  cell  type  specific  when  the  gene  is  significantly 
 over-expressed  in  at  least  one  cell  type  compared  to  all  other  cell  types  in  healthy 
 disease-relevant  tissue  (adjusted  p-value  <  0.01,  logFC  >  5).  The  choice  of  logFC  threshold 
 was  motivated  by  the  observation  that  genes  significantly  over-expressed  at  lower  log-fold 
 changes  are  often  ubiquitously  highly  expressed,  while  those  at  higher  fold  changes  are 
 genuinely  cell  type  specific  (Supplementary  Figure  8C).  We  annotated  a  G-D  pair  as  disease 
 cell  specific  when  the  gene  is  significantly  over-expressed  in  disease  in  at  least  one  cell  type 
 in  disease-relevant  tissue  (adjusted  p-value  <  0.01,  logFC  >  0.5).  The  total  number  of 
 supported  G-D  pairs  for  each  disease  is  shown  in  Supplementary  Figure  2.  We  annotated  a 
 G-D as cell type and disease cell specific if supported by both classes of scRNA-seq support. 

 Known drug relationships from Open Targets 
 Open  Targets  direct  association  evidence  was  accessed  via  download  from  the  Open  Targets 
 Platform  (version  23.02)  [1,25].  Downloads  used  for  this  analysis  were  the  ‘Diseases’  and 
 ‘Direct  Associations  by  Type’  tables.  Experimental  Factor  Ontology  (EFO)  disease  terms 
 used  in  Open  Targets  were  mapped  to  their  corresponding  term  in  used  in  the  CellxGene 
 database  (MONDO  IDs)  using  the  ontology  tree  available  in  the  Open  Biological  and 
 Biomedical  Ontology  Foundry  (  https://obofoundry.org/ontology/mondo.html)  .  We  annotated 
 G-D  pairs  for  which  approved  or  clinical  candidate  drugs  exist  using  the  ChEMBL  evidence 
 score  from  the  Open  Targets  Platform.  Briefly,  each  G-D  pair  is  assigned  a  score  between  0 
 and  1  based  on  clinical  precedence,  then  the  score  is  down-weighted  by  half  if  the  clinical 
 trial  has  stopped  early  for  negative  results  (no  effect  of  the  drug)  or  safety  and  side  effects 
 concerns.  Following  the  ChEMBL  evidence  scoring  in  Open  Targets 
 (  https://platform-docs.opentargets.org/evidence#chembl  ),  we  classified  G-D  pairs  with  a 
 ChEMBL  evidence  score  >  0.1  as  safe  (>  phase  I),  pairs  with  score  >  0.2  as  effective  (>  phase 
 II),  and  pairs  with  score  >  0.7  as  approved  (>  phase  III).  While  we  do  not  explicitly  exclude 
 gene-disease  pairs  supported  by  failed  trials,  the  down-weighting  in  Open  Targets  ensured 
 that  targets  failed  in  early  clinical  trials  are  excluded,  and  targets  failed  in  phase  III  were  at 
 most classified as passing phase II. 

 Genetic association 
 We  annotated  G-D  pairs  with  genetic  support  using  the  genetic  direct  association  score 
 provided  in  Open  Targets,  aggregating  evidence  for  association  of  genes  and  rare  and 
 common  variants  from  several  sources  (  https://platform-docs.opentargets.org/evidence  )  [1]. 
 We classified as supported by genetics any G-D pair with genetic association score > 0. 

 Association between omic evidence and clinical success 
 To  test  for  association  between  omic  evidence  (cell  type  specificity,  disease  cell  specificity, 
 genetic  association)  and  clinical  success  (passing  clinical  phase  I,  II  or  III)  we  computed  the 
 odds  ratio  and  Fisher  exact  test  p-value  under  the  null  hypothesis  that  the  true  ratio  between 
 the  odds  of  being  a  successful  G-D  pair  with  omic  support  and  of  being  successful  without 
 support  is  1.  In  all  association  tests,  drug  indications  for  clinical  success  and  data  for  omic 
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 support  are  aligned  by  disease.  To  compute  odds  ratios,  95%  confidence  intervals  and 
 p-values, we used the odds ratio calculation implementation in the python package  scipy  [74]. 

 To  enumerate  the  space  of  possible  G-D  pairs  for  odds  ratios  analysis,  we  used  the  following 
 gene  sets  as  “gene  universes”:  protein-coding  genes  (N=19620)  were  obtained  from  Ensembl 
 v108;  antibody-tractable  (N=12527)  and  small  molecule-tractable  (N=6550)  genes,  based  on 
 the  Open  Targets’  druggability  assessment 
 (  https://platform-docs.opentargets.org/target/tractability)  ,  were  obtained  from  Minikel  et  al. 
 [18];  Genes  targeted  by  therapies  in  clinical  trial  for  any  indication  (known  drug  targets, 
 N=936)  were  obtained  from  Open  Targets  v23.02;  sets  of  typically  druggable  targets 
 (Supplementary  Figure  5B-C)  were  obtained  from  Minikel  et  al.  [18].  Unless  otherwise 
 specified,  odds  ratios  shown  in  the  manuscript  were  computed  using  protein-coding  genes  as 
 the gene universe. 

 Drug-level analysis 
 We  extracted  compound-level  data  from  Open  Targets  for  17,095  drug  molecules  together 
 with  their  year  of  first  approval,  list  of  indications,  list  of  targets,  and  maximum  clinical 
 phase  using  Open  Targets  “molecule”  and  “mechanismOfAction”  data  objects.  Among  these 
 drugs,  we  then  identified  those  that  had  in  their  approved  or  investigational  indications  list 
 any  of  the  30  diseases  considered  in  the  target-level  analysis  (n  =  2358  drugs)  and  then 
 further  narrowed  this  list  of  drugs  to  those  in  phase  II  or  greater  (n  =  1219)  and  phase  III  or 
 phase  IV  clinical  trials  for  the  30  diseases  considered  in  this  analysis  (n=695).  Drugs  were 
 annotated  as  having  single  cell  or  direct  genetic  association  support  for  the  considered 
 indications  if  any  of  their  target-disease  pairings  had  this  evidence  in  the  preceding 
 target-disease  evidence  analysis.  To  examine  the  number  of  indications  for  each  drug  for  one 
 of  the  30  diseases  in  our  analysis  with  genetic  or  scRNA-seq  support,  we  aggregated  Open 
 Targets  drug  information  and  counted  the  total  number  of  approved  or  investigational 
 indications for each of these drugs. 

 We  used  a  multiple  linear  regression  model  to  investigate  the  possible  associations  of  single 
 cell  support,  and  direct  genetic  support  with  the  number  of  indications  approved  or  under 
 investigation  per  drug,  accounting  for  year  of  the  clinical  trial  as  a  confounder 
 (Supplementary  Figure  6).  To  satisfy  model  assumptions,  log(number  of  indications  per  drug) 
 was  used  as  the  dependent  variable  to  address  right-skew  in  number  of  indications.  Single 
 cell  and  genetic  evidence  could  be  synergistic,  so  an  interaction  term  was  used  between  these 
 during modelling (Supplementary Table 5). 

 Comparison of fine annotation and ontology-based annotation on lung diseases 
 To  compare  gene-disease  pairs  prioritized  with  ontology-based  annotation  and  with  uniform 
 integration-based  annotations,  we  downloaded  the  extended  Human  Lung  Cell  Atlas 
 (eHLCA)  [30]  using  the  CellxGene  census  API  (CellxGene  census  datasetID: 
 9f222629-9e39-47d0-b83f-e08d610c7479),  selecting  normal  lung  and  patient  data  for  3 
 diseases  (pneumonia,  cystic  fibrosis  and  pulmonary  fibrosis).  These  diseases  were  selected 
 because  all  scRNA-seq  data  considered  in  the  ontology-based  analysis  was  included  in  the 
 eHLCA  dataset,  therefore  allowing  us  to  compare  the  impact  of  annotations  on  matched  data. 
 We  pseudo-bulked  each  disease  dataset  using  the  finest  author-provided  annotation  (column: 
 ann_finest_level  in  CellxGene  metadata)  and  performed  differential  expression  analysis  as 
 described above. 
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 Disease-specific target analysis 
 To  categorize  the  targets  supported  by  different  classes  of  omic  evidence  in  systemic  lupus 
 erythematosus  and  pulmonary  emphysema,  we  used  the  annotation  of  tractable  gene  classes 
 as  defined  by  Minikel  et  al.  [18].  Gene  ontology  enrichment  analysis  was  performed  using  the 
 Enrichr  method  [75]  as  implemented  in  the  Python  package  GSEApy  [76].  The  categorization 
 of  IFN-gamma  pathway  genes  into  receptors,  transcription  factors,  targets,  and  secreted 
 proteins  (Supplementary  Figure  13D)  was  obtained  from  OmniPath  [77]  and  Dorothea 
 [78,79]. 

 Data availability 
 All  scRNA-seq  data  analysed  in  this  study  is  available  via  the  CZ  CellxGene  Discover 
 database  and  CxG  Census  API  (  https://chanzuckerberg.github.io/cellxgene-census/  ,  version: 
 2023-07-25).  Data  on  clinical  precedence  for  known  drugs  for  each  target-disease  pair,  as 
 well  as  gene-disease  genetic  association  scores,  was  downloaded  from  Open  Targets  (version 
 23.02,  https://platform.opentargets.org/downloads/data  ).  Data  on  gene  tolerance  to 
 loss-of-function  mutations  (LOEUF,  loss-of-function  observed/expected  upper  bound 
 fraction)  was  extracted  from  gnomAD.v2.1’s  pLoF  metrics  by  gene  data  [80] 
 (  https://gnomad.broadinstitute.org/downloads  ).  Gene  sets  used  as  universes  for  association 
 analysis  are  available  at 
 https://github.com/emdann/sc_target_evidence/blob/master/data/universe_genes.csv  . 
 Processed  datasets  and  analysis  outputs  are  available  as  supplementary  tables  and  via  figshare 
 (doi:10.6084/m9.figshare.25360129). 

 Code availability 
 All code to reproduce data downloads, processing and analysis is available at 
 https://github.com/emdann/sc_target_evidence  . 
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 Supplementary Figures 

 Supplementary  Figure  1:  Example  outcome  of  harmonisation  of  cell  type  annotations  based  on  Cell  Ontology.  The  y-axis  shows 
 the  original  Cell  Ontology  label  used  in  CZ  CellxGene  database  for  the  myocardial  infarction  dataset  (disease-relevant  tissue:  heart)  and 
 the x-axis shows the updated label after label harmonisation. The heatmap color and number indicate the number of cells for each label. 
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 Supplementary  Figure  2:  Number  of  clinically  successful  and  supported  targets  per  disease.  Barplot  of  number  of  gene  targets  in 
 clinical  success  groups  (green)  and  with  omic  support  (black)  by  disease  (y-axis).  Diseases  are  ordered  by  the  number  of  approved  (> 
 phase  III)  targets.  The  dotted  lines  denote  the  mean  across  diseases.  The  total  number  of  G-D  pairs  for  each  class  is  reported  above  the 
 bar plots. 

 Supplementary  Figure  3:  Space  of  analysed  genes  for  odds  ratio  analysis  (gene  universes).  Upset  plot  showing  total  size  (left)  and 
 intersection size (top) for different gene universes used in the analysis. SM: small molecule; AB: antibody 
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 Supplementary  Figure  4:  Year  of  approval  of  considered  drugs.  Barplot  showing  year  of  first  approval  for  drugs  in  phase  III/IV  for 
 any  of the  30  studied  diseases. Color  indicates  if  target-disease  pairs  for  a  given  drug  have  scRNA-seq  support  (blue),  genetic association 
 support (red), or both (purple). Drugs without single cell or genetic support are shown in grey. 
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 Supplementary  Figure  5:  Comparison  with  genetic  support  .  (A)  Odds  ratio  for  association  with  clinical  success  with  combined 
 genetic  association  and  scRNA-seq  support.  Association  is  computed  using  protein-coding  genes  as  the  gene  universe.  (B)  Odds  ratio  for 
 association  between  omic  evidence  and  clinical  success  for  different  classes  of  druggable  proteins.  For  each  test,  the  numbers  to  the  right 
 show  the  number  of  omic-supported  targets  over  total  successful  targets.  The  error  bars  denote  95%  confidence  intervals  of  the  odds  ratio. 
 Points  in  red  indicate  cases  where  the  enrichment  for  successful  targets  was  statistically  significant  (Fisher’s  exact  test  p-value  <  0.05). 
 The  dotted  line  denotes  Odds  Ratio  =  1  (no  enrichment).  (C)  Box  plot  of  tolerance  to  loss-of-function  mutations,  estimated  by 
 Loss-of-function  Observed/Expected  Upper-bound  Fraction  (LOEUF)  in  gnomAD  v2.1  (y-axis)  for  each  class  of  druggable  target  shown 
 in  B  (x-axis)  (Nuclear  receptors:  N=46;  kinases:  N=338;  catalytic  receptors:  N=246;  ion  channels:  N=320;  enzymes:  N=864;  transporters: 
 N=510;  GPCRs:  N=574).  Gene  classes  are  sorted  by  mean  LOEUF  score.  15  outlier  genes  with  LOEUF  >  3  are  not  shown.  In  the 
 boxplots,  the  center  line  denotes  the  median;  the  box  limits  denote  the  first  and  third  quartiles;  and  the  whiskers  denote  1.5x  the 
 interquartile range (IQR). 
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 Supplementary  Figure  6:  Number  of  approved  or  investigational  indications  per  drug  by  year  of  first  approval  and  scRNAseq 
 evidence  support.  Boxplots  of  number  of  approved  or  investigational  indications  (y-axis)  for  drugs  approved  (>=  Phase  III)  for  the  30 
 diseases  considered  in  this  study.  Drugs  are  stratified  by  year  of  first  approval  (x-axis),  and  by  presence  or  absence  of  omic  support  (fill). 
 The  left  plot  shows  the  number  of  indications  for  drugs  supported  by  genetic  association.  The  right  plot  shows  the  number  of  indications 
 for  drugs  supported  by  scRNA-seq  (either  cell  type  specific  or  disease  cell  specific  targets).  In  the  boxplots,  the  center  line  denotes  the 
 median; the box limits denote the first and third quartiles; and the whiskers denote 1.5x the interquartile range (IQR). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 Supplementary  Figure  7:  Tractability  of  unexplored  targets  across  diseases.  (A)  Scatter  plot  of  fraction  of  tractable  unexplored  genes 
 (x-axis)  for  27  diseases  (y-axis)  for  different  classes  of  omic  evidence  (color).  We  consider  three  categories:  antibody  tractable,  small 
 molecule  tractable,  and  tractable  by  either  class  of  drugs.  Dashed  lines  represent  the  fraction  of  tractable  genes  across  all  protein-coding 
 genes.  Diseases  for  which  no  gene  with  genetic  evidence  was  found  are  not  shown  (n=3).  (B)  Violin  plots  of  tolerance  to  loss-of-function 
 mutations,  estimated  by  Loss-of-function  Observed/Expected  Upper-bound  Fraction  (LOEUF)  in  gnomAD  v2.1  (y-axis)  for  each 
 tractable  or  non-tractable  gene  considered  for  analysis  in  figure  2D  (x-axis).  The  left  plot  shows  LOEUF  estimates  for  antibody  tractable 
 genes.  The  right  plot  shows  LOEUF  estimates  for  small  molecule  tractable  genes.  The  values  on  top  of  each  plot  show  the  p-value  for 
 Wilcoxon  rank-sum  test  comparing  the  mean  LOEUF  between  tractable  and  non-tractable  genes  (null  hypothesis:  no  difference).  In  the 
 boxplots,  the  center  dot  denotes  the  median;  the  box  limits  denote  the  first  and  third  quartiles;  and  the  whiskers  denote  1.5x  the 
 interquartile range (IQR). 
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 Supplementary  Figure  8:  Analysis  of  parameters  for  definition  of  targets  with  scRNA-seq  support.  (A)  Odds  ratio  (x-axis,  in  log10 
 scale)  of  association  between  target  clinical  success  (y-axis)  and  scRNA-seq  support  for  the  target,  computed  from  highly  variable  genes 
 in  scRNA-seq  datasets  of  disease-relevant  tissue.  For  each  test,  the  numbers  to  the  right  show  the  number  of  omic  supported  targets  over 
 total  successful  targets.  (B)  Barplot  of  number  of  supported  G-D  pairs  with  increasing  log-Fold  Change  (logFC)  threshold  on  differential 
 expression  (DE)  analysis  results,  for  cell  type  specific  genes  (left)  and  disease  cell  specific  genes  (right).  (C)  Example  from  lung 
 adenocarcinoma  scRNA-seq  data  showing  cell  type  specificity  of  candidate  target  genes  at  high  DE  log-fold  changes.  The  left  scatterplot 
 shows  the  mean  expression  (log-normalized  counts,  x-axis)  and  DE  log-fold  change  for  one-vs-all  test  (y-axis)  used  for  cell  type 
 specificity  analysis  for  each  significantly  over-expressed  gene  (1%  FDR).  The  dotplots  to  the  right  show  the  expression,  in  terms  of  mean 
 (color)  and  cell  fraction  (size)  for  5  randomly  selected  cell  type  specific  genes  detected  in  10  lung  cell  types  (the  cell  ontology  term  is 
 indicated  on  top  of  the  plots).  The  top  plot  shows  significant  genes  with  logFC  >  5  and  the  bottom  plot  shows  significant  genes  with 
 logFC  <  5.  (D)  Odds  ratio  (x-axis,  in  log10  scale)  of  association  between  clinical  success  (y-axis)  of  a  target  and  scRNA-seq  support 
 defined  using  an  increasing  threshold  for  DE  log-fold  change  (y-axis).  The  dotted  blue  line  denotes  the  threshold  selected  for  analyses 
 throughout  this  study.  For  each  test,  the  numbers  to  the  right  show  the  number  of  omic  supported  targets  over  total  successful  targets.  The 
 error  bars  denote  95%  confidence  intervals  of  the  odds  ratio.  Points  in  red  indicate  cases  where  the  enrichment  for  successful  targets  was 
 statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no enrichment). 
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 Supplementary  Figure  9:  Cell  type-level  and  tissue-level  differential  expression  analysis  for  disease  cell  specificity.  (A)  Illustration 
 of  strategy  to  compare  genes  identified  as  disease  specific  with  cell  type-level  or  tissue-level  differential  expression  analysis  between 
 normal  (labelled  N  )  and  diseased  (labelled  D  )  samples.  For  each  disease,  we  compare  gene  expression  between  healthy  and  diseased 
 tissue  either  per  cell  type  (left  panel,  cell  type-level)  or  summed  across  all  cell  types  (right  panel,  tissue-level).  Differential  expression  in 
 any  of  these  categories  is  classed  as  disease  cell  specific  support.  (B)  Barplot  showing  the  number  of  successful  targets  at  different 
 clinical  stages  (x-axis)  annotated  as  disease  cell  specific  at  the  cell  type  level  (blue)  or  the  tissue  level  (red).  (C)  Odds  ratio  (x-axis,  in 
 log10  scale)  of  association  between  clinical  success  of  a  target  and  scRNA-seq  support  (y-axis)  selected  using  up-  or  down-regulated 
 genes  (based  on  DE  analysis  log-Fold  Change  and  adjusted  p-value  >  0.01)  with  tissue  or  cell  type  level  analysis,  as  defined  in  (A). 
 Results  are  shown  considering  gene-disease  pairs  for  30  diseases.  We  test  association  with  safe  targets  (passed  phase  I,  top  row),  effective 
 targets  (passed  phase  II,  middle  row)  and  approved  targets  (passed  phase  III,  bottom  row).  For  each  test,  the  numbers  to  the  right  show 
 the  number  of  omic  supported  targets  over  total  successful  targets.  The  error  bars  denote  95%  confidence  intervals  of  the  odds  ratio. 
 Points  in  red  indicate  cases  where  the  enrichment  for  successful  targets  was  statistically  significant  (Fisher’s  exact  test  p-value  <  0.05). 
 The dotted line denotes Odds Ratio = 1 (no enrichment). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 Supplementary  Figure  10:  Impact  of  fine  cell  type  annotations  on  scRNA-seq  support  for  target  discovery.  (A)  Confusion  table 
 matching  the  number  of  cells  with  coarse  annotation  labels  (uniformed  Cell  Ontology  labels  in  CZ  CellxGene  database,  x-axis)  and  fine 
 integration-based  annotations  on  the  extended  Human  Lung  Cell  Atlas  (eHLCA)  dataset  [30]  (CellxGene  census  datasetID: 
 9f222629-9e39-47d0-b83f-e08d610c7479)  (y-axis).  (B)  Upset  plots  showing  the  total  size  (left  bars)  and  size  of  intersections  (top  bars) 
 of  genes  prioritized  for  3  lung  diseases  (pulmonary  fibrosis,  cystic  fibrosis,  pneumonia)  using  fine  annotations  from  eHLCA  or  coarse 
 annotations  from  CZ  CellxGene  database.  We  compare  genes  prioritized  by  cell  type  specificity  (top  plot)  and  by  disease  cell  specificity 
 (bottom  plot).  (C)  Odds  ratio  (x-axis,  in  log10  scale)  of  association  between  clinical  success  of  a  target  and  scRNA-seq  support  (y-axis) 
 computed  using  fine  or  coarse  cell  type  annotations.  For  disease  cell  specificity,  we  also  considered  genes  prioritized  by  tissue-level 
 analysis,  as  described  in  Supplementary  Figure  9A.  Results  are  shown  considering  gene-disease  pairs  for  3  lung  diseases  sampled  in  the 
 eHLCA  dataset  (pulmonary  fibrosis,  cystic  fibrosis,  pneumonia).  We  test  association  with  safe  targets  (passed  phase  I,  top  row),  effective 
 targets  (passed  phase  II,  middle  row)  and  approved  targets  (passed  phase  III,  bottom  row).  Protein-coding  genes  were  used  as  gene 
 universe.  For  each  test,  the  numbers  to  the  right  show  the  number  of  omic  supported  targets  over  total  successful  targets.  The  error  bars 
 denote  95%  confidence  intervals  of  the  odds  ratio.  Points  in  red  indicate  cases  where  the  enrichment  for  successful  targets  was 
 statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no enrichment). 

 Supplementary  Figure  11:  Association  between  omic  support  and  clinical  success  stratified  by  disease.  Odds  ratio  (x-axis,  in  log10 
 scale)  of  association  between  clinical  success  of  a  target  and  scRNA-seq  support  (y-axis)  computed  stratifying  by  disease.  Results  are 
 shown  for  22  diseases  with  at  least  1  approved  target.  Diseases  are  sorted  by  odds  ratios  for  association  with  genetic  support.  The  gene 
 universe  used  was  protein-coding  targets.  For  each  test,  the  numbers  to  the  right  show  the  number  of  omic  supported  targets  over  total 
 successful  targets.  The  error  bars  denote  95%  confidence  intervals  of  the  odds  ratio.  Points  in  red  indicate  cases  where  the  enrichment  for 
 successful  targets  was  statistically  significant  (Fisher’s  exact  test  p-value  <  0.05).  The  dotted  line  denotes  Odds  Ratio  =  1  (no 
 enrichment). 
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 Supplementary  Figure  12:  Variability  in  scRNA-seq  supported  targets  between  diseases.  (A)  Scatterplots  showing  the  number  of 
 tested  cell  types  in  disease-relevant  tissue  (x-axis)  against  the  number  of  identified  cell  type  specific  (left)  and  disease  cell  specific  (right) 
 genes.  Dots  are  colored  by  disease-relevant  tissue.  Pearson’s  correlation  coefficient  and  p-value  for  permutation  test  are  shown  on  top. 
 (B)  Scatterplots  showing  the  number  of  disease  donors  (left  column)  and  control  donors  (right  column)  in  scRNA-seq  dataset  for  each 
 disease  against  the  number  of  identified  cell  type  specific  (bottom  row)  and  disease  cell  specific  (top  row)  genes.  Pearson’s  correlation 
 coefficient  and  p-value  for  permutation  test  are  shown  on  top.  (C)  Boxplots  showing  the  fraction  of  known  clinical  targets  supported  by 
 disease  cell  specificity  (y-axis)  for  different  diseases  grouped  by  size  of  disease  donors  cohort  (x-axis).  The  p-value  for  Wilcoxon  Rank 
 Sum  test  comparing  small  and  medium  sized  cohorts  is  reported  on  top.  Fractions  of  safe  (>  phase  I,  left),  effective  (>  phase  II,  center) 
 and  approved  targets  (>  phase  III,  right)  are  shown.  In  the  boxplots,  the  center  line  denotes  the  median;  the  box  limits  denote  the  first  and 
 third quartiles; and the whiskers denote 1.5x the interquartile range (IQR). 
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 Supplementary  Figure  13:  Functional  analysis  of  supported  targets  for  systemic  lupus  erythematosus  (SLE).  (A-C)  Gene  Ontology 
 (GO)  enrichment  analysis  on  unexplored  supported  genes  in  SLE  (excluding  known  drug  targets).  In  each  graph,  we  show  significantly 
 enriched  (adj.  p-value  <  0.01)  GO  terms  (y-axis)  sorted  by  adjusted  p-value  (x-axis,  negative  log10).  Terms  are  grouped  by  Gene 
 Ontology  class  (biological  process,  cellular  component,  molecular  function).  For  each  term,  a  sample  of  up  to  10  genes  associated  to  the 
 term  are  shown.  We  show  terms  enriched  in  genetic  supported  genes  (A),  disease  cell  specific  genes  (B)  and  cell  type  specific  supported 
 genes  (C);  (D)  Binary  table  displaying  genetic,  disease  cell,  or  cell  type  specificity  support  for  IFN  Gamma  pathway  genes  in  pulmonary 
 emphysema.  The  filled  bars  denote  whether  the  evidence  exists  (black)  or  does  not  exist  (white)  for  each  gene.  IFN  Gamma  pathway 
 genes  were  derived  from  the  MSigDB  Hallmark  database  (only  genes  supported  by  at  least  one  class  of  omic  evidence  are  shown).  Genes 
 were  categorized  into  four  functional  groups  (receptors,  transcription  factors  (TFs),  targets,  and  secreted  proteins)  using  OmniPath  [77] 
 and Dorothea [78,79]. Each bar represents the presence of genetic, disease cell, or cell type marker evidence. 

 Supplementary  Figure  14:  Pulmonary  emphysema  drug  target  gene  expression  in  healthy  human  lung  atlas.  Dotplot  of  expression 
 of  safe,  effective  and  approved  drug  target  genes  for  treatment  of  pulmonary  emphysema  (y-axis)  across  cell  types  found  in  human  lung 
 tissue  (x-axis).  Dot  color  denotes  the  mean  expression  (log-normalized  counts)  in  a  cell  type  across  donors.  Dot  size  denotes  the  fraction 
 of  donors  in  which  the  gene  in  expressed.  Lung  cells  are  annotated  using  curated  labels  from  the  Human  Lung  Cell  Atlas  [30].  Boxes 
 indicate  targets  for  either  Roflumilast  (phosphodiesterase-4  inhibitor)  or  Tretinoin  (all-trans  retinoic  acid).  Genes  highlighted  in  red  show 
 genes classified as  cell type specific  by DE analysis. 
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 Supplementary  Figure  15:  Technical  metadata  for  disease  scRNA-seq  datasets.  Heatmap  showing  the  scRNA-seq  assay  and 
 suspension  type  (x-axis)  for  samples  of  different  tissues  and  diseases  (y-axis).  Heatmap  color  and  annotated  numbers  denote  the  number 
 of samples analysed for each group. Diseases are grouped by disease-relevant tissue. 
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 Supplementary Tables 
 Supplementary Table 1:  Table of diseases available  in CZ CellxGene database considered for study 
 [disease] name of disease used in study 
 [disease_ontology_id] MONDO identifier for disease used in study 
 [disease_relevant_tissue] Manually curated annotation for disease-relevant tissue 
 [disease_name_original] Name of disease found in CZ CellxGene database 
 [disease_ontology_id _original] MONDO identifier for disease found in CZ CellxGene database 
 [reason2exclude] if not NA, description of reason to exclude disease from final analysis 

 Supplementary Table 2:  Sample-level metadata for scRNA-seq  datasets from CZ CellxGene database used in study 
 [assay] scRNA-seq protocol 
 [tissue] original tissue annotation 
 [tissue_general] high-level mapping of a tissue 
 [suspension type] indicates whether cells or nuclei were isolated 
 [disease] disease condition of donor 
 [dataset_id] Identifier for dataset in CellXGene Census 
 [donor_id] Identifier for donor in dataset 
 [  development_stage_ontology_term_id  ] Human Developmental  Stages ontology term for age of donor 
 [sample_id] sample identifier (donor, assay, tissue) 
 [disease_name_original] name of disease found in CZ CellxGene database 
 [disease_ontology_id _original] MONDO identifier for disease found in CZ CellxGene database 
 [disease_ontology_id] MONDO identifier for disease used in study 
 [disease_relevant_tissue] Manually curated annotation for disease-relevant tissue 

 Supplementary Table 3:  Table of target-disease pairs  with annotation of clinical success and omic support 
 [gene_id] Ensembl ID for gene 
 [disease_ontology_id] MONDO identifier for disease 
 [disease] name of disease 
 [gene_name] gene name 
 [gene_class] annotation of tractable gene classes 
 [genetic_association] OpenTargets genetic association score 
 (  https://platform-docs.opentargets.org/evidence#evidence-data-sources  ) 
 [known_drug] OpenTargets known drug score (  https://platform-docs.opentargets.org/evidence#evidence-data-sources  ) 
 [is_druggable, is_safe, is_effective, is_approved] clinical status for each gene-disease pair 
 [GWAS_evidence] is gene-disease pair supported by genetic association 
 [ct_marker_evidence] is gene-disease pair supported by cell type specificity 
 [disease_evidence] is gene-disease pair supported by disease cell specificity 
 [ct_marker_and_disease_evidence] is gene-disease pair supported by cell type and disease cell specificity 
 [disease_evidence_celltype] is gene-disease pair supported by disease cell specificity (celltype-level) 
 [disease_evidence_tissue] is gene-disease pair supported by disease cell specificity (tissue-level) 

 Supplementary Table 4:  Results of association analysis  between omic support and clinical success across diseases 
 [odds_ratio] Odds ratio of association between evidence and clinical success 
 [ci_low] 95% confidence interval of odds ratio (bottom) 
 [ci_high] 95% confidence interval of odds ratio (top) 
 [pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1) 
 [n_success] Number of successful gene-disease pairs 
 [n_insuccess] Number of not successful gene-disease pairs 
 [n_supported_approved] Number of successful gene-disease pairs supported by omic evidence 
 [n_supported] Total number of gene-disease pairs supported by omic evidence 
 [evidence] omic support class (all_sc_evidence indicates cell type and disease cell specific genes) 
 [clinical status] Clinical success class 
 [universe] Name of considered gene universe 
 [universe_size] Number of genes in gene universe 
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 Supplementary Table 5:  Results of multiple linear regression model predicting log(number of investigational or approved 
 indications of a drug) from its year of first approval, drug target-disease support by any single cell evidence, and drug 
 target-disease support by any direct genetic association. 

 Supplementary Table 6:  Results of association analysis  between omic support and clinical success for each disease (gene 
 universe: protein-coding genes) 
 [odds_ratio] Odds ratio of association between evidence and clinical success 
 [ci_low] 95% confidence interval of odds ratio (bottom) 
 [ci_high] 95% confidence interval of odds ratio (top) 
 [pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1) 
 [n_success] Number of successful gene-disease pairs 
 [n_insuccess] Number of not successful gene-disease pairs 
 [n_supported_approved] Number of successful gene-disease pairs supported by omic evidence 
 [n_supported] Total number of gene-disease pairs supported by omic evidence 
 [evidence] omic support class (all_sc_evidence indicates cell type and disease cell specific genes) 
 [clinical status] Clinical success class 
 [disease_ontology_id] MONDO identifier for disease 
 [disease] name of disease 
 [disease_relevant_tissue] Manually curated annotation for disease-relevant tissue 
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