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ABSTRACT
Significance The wide availability of sweet flavours
has been hypothesised as a factor in the popularity of
electronic cigarette (ECIG), especially among youth.
Saccharides, which are commonly used to impart a
sweet flavour to ECIG liquids, thermally degrade to
produce toxic compounds, like aldehydes and furans.
This study investigates the formation of furanic
compounds in aerosols when ECIG liquid solutions of
varying sweetener concentrations are vaped under
different power and puff duration.
Methods Liquids are prepared by mixing aqueous
sucrose, glucose or sorbitol solutions to a 70/30
propylene glycol/glycerin solution. Aerosols are generated
and trapped on filter pads using a commercially available
ECIG operating at 4.3 and 10.8 W and 4 and 8 s puff
duration. Extraction, elimination of matrix interference
and quantification are achieved using novel solid phase
extraction and gas chromatography tandem mass
spectrometry methods (GC-MS).
Results Well-resolved GC peaks of 5-
hydroxymethylfurfural (HMF) and furfural (FA) are
detected. Both HMF and FA are quantified in the
aerosols of sweet-flavoured e-liquids under various
vaping conditions. Levels of furan emissions are
significantly correlated with electric power and sweetener
concentration and not with puff duration. Unlike
saccharides, the formation of HMF and FA from a sugar
alcohol is negligible.
Conclusions The addition of sweeteners to ECIG
liquids exposes ECIG user to furans, a toxic class of
compounds. Under certain conditions, the per-puff yield
of HMF and FA in ECIG emissions is comparable to
values reported for combustible cigarettes.

INTRODUCTION
Electronic cigarette (ECIG) use has rapidly become
a global epidemic.1–4 Between 2013 and 2014,
ECIG use has tripled among middle and high school
students and surpassed current use of tobacco pro-
ducts.5–7 Besides the wide availability,8–10 media
advertisements11 12 and social acceptability, the high
prevalence of ECIG use among youth has been
attributed to the wide variety of available
flavours.13 14

The ECIG basic design consists of a battery, elec-
trical heating coil and e-liquid reservoir.15 ECIGs
vapourise a liquid composed of varying ratios of
propylene glycol (PG), glycerin (VG), water, nico-
tine (0–48 mg/mL) and additives, including flavour-
ants.16 The efficacy of ECIG nicotine delivery has
evolved with design and user behaviour over the
years.17 18 Along with nicotine, e-liquids can be
contaminated with nitrosamines, volatile organic

compounds or metals leached from the different
metallic components.19 20 Other toxicants, which
are generated from the thermal degradation of the
heated liquid,21 are referred to as ‘vaping toxi-
cants’. One group of vaping toxicants is reactive
oxygen species that are generated from the cleavage
of chemical bonds.22 Another group is carbonyls
which may be the most studied toxicants in ECIG
vapours after nicotine.23 Studies have reported
widely varying carbonyl yields,24 with some
exceeding those reported for combustible cigar-
ettes.25 Produced carbonyls in ECIG aerosol was
anticipated from the investigation of PG and VG
pyrolysis in food chemistry and biomass fuel gener-
ation.26 27 Flavourants may present another potent
source of ‘vaping toxicants’.28

In the ECIG market, there are more than 7000
different liquid flavours.29–31 Whether flavours en-
hance ECIG appeal to smokers and thereby reduce
overall consumption of combustible cigarettes,32–34

or serve to initiate nicotine-naïve individuals and
thereby increase overall use of combustible pro-
ducts35–38 remains a controversial topic. In 2009,
the US Food and Drug Administration (FDA)
banned tobacco cigarettes with characterising fla-
vours because of their appeal to youth.
Several studies have reported toxicant emissions

from flavoured ECIGs.28 39 40 Flavourants may be
grouped into a number of categories, one of which
catalogues six common groups: tobacco, menthol,
fruits, beverages, sweet flavours and others.28 The
‘sweet’ category, which is popular among ECIG
users,7 lists sugar, caramel and honey as advertised
ingredients.41 The thermal degradation of sugars
has been reported to yield toxic furans includ-
ing 5-hydroxymethylfurfural (HMF) and furfural
(FA).42 43 FA causes irritation to the upper respira-
tory tract in humans,44 and both FA and HMF
show tumourigenic activity in mice.45–47

In this study, we examined whether vaping
laboratory-prepared sucrose, glucose and sorbitol
containing e-liquid solutions can produce signifi-
cant levels of HMF and FA. To do so, a novel ana-
lytical clean-up procedure gas chromatography
tandem mass spectrometry (GC-MS) method was
developed and optimised. Using this method, the
influence of puff duration, power and sugar con-
centration on the yield of these toxicants was
evaluated.

MATERIALS AND METHODS
Liquids with various concentrations of sucrose,
glucose or sorbitol were prepared in a 70/30 PG/
VG ratio, and vaped under variable ECIG electrical
power and puff duration. The analysis of HMF and

ii88 Soussy S, et al. Tob Control 2016;25:ii88–ii93. doi:10.1136/tobaccocontrol-2016-053220

Research paper
 on A

pril 9, 2024 by guest. P
rotected by copyright.

http://tobaccocontrol.bm
j.com

/
T

ob C
ontrol: first published as 10.1136/tobaccocontrol-2016-053220 on 25 O

ctober 2016. D
ow

nloaded from
 

http://dx.doi.org/10.1136/tobaccocontrol-2016-053220
http://dx.doi.org/10.1136/tobaccocontrol-2016-053220
http://dx.doi.org/10.1136/tobaccocontrol-2016-053220
http://crossmark.crossref.org/dialog/?doi=10.1136/tobaccocontrol-2016-053220&domain=pdf&date_stamp=2016-11-04
http://tobaccocontrol.bmj.com
http://tobaccocontrol.bmj.com/


FA in aerosols by GC-MS necessitated the optimisation of a new
extraction procedure to separate furans from PG and VG using
solid phase extraction (SPE).

Materials
SPE cartridges (1000 mg/6 mL Hypersep si) and quartz filters
(Advantec, QR-100, 47 mm) were procured from Thermo
Fisher Scientific and Whatman International, respectively.
High-performance liquid chromatography-grade ethyl acetate,
hexane, chloroform and acetonitrile, PG (99.5%), VG (99–
101%), and HMF analytical standard were obtained from Sigma
Aldrich. FA and internal standard (5-chloro-2-furfural) were
obtained from Absolute Standards. Glucose, sorbitol and
sucrose were food grade products provided by the Faculty of
Agricultural and Food Sciences at the American University of
Beirut (AUB).

Liquid preparation
E-liquid of 70/30 PG/VG ratio was used because it is commonly
found in ECIG products. Stock solutions of sucrose, glucose
and sorbitol in distilled water were prepared with 345, 442 and
243 (mg/mL) concentrations, respectively. Subsequently, 0.5 mL
of each stock solution was added to 10 mL of the PG/VG
mixture. The percentage of sugar in the prepared liquids
(1.01–1.91 wt% equivalent to 11–21 mg/mL) was chosen to
be in the range of commercially reported concentrations
(1–4 wt%).28 Four concentrations of 0.03, 0.25, 0.63, 1.23
wt% were prepared and sonicated for 2 hours to ensure
homogeneity.

Aerosol generation and sampling
Aerosols were generated from a custom-designed digital puff
production machine at AUB48 using the commercial brand
VaporFi PLATINUM II Tank (VP).49 This model was selected
because it represents a common ‘tank’ system in which liquid is
conducted from the reservoir via a short wick to the heating
coil.

Aerosols were generated at 4.3 and 10.8 W, representing a
typical and higher than average power input (operating ranges
of 3–15 W are common).50 In addition to power, the effects of
two puff durations (4 or 8 s) and sucrose concentrations were
assessed. Electrical resistances of the ECIG atomisers, which
were measured before and after each use, were 2.3±0.11 Ω.

Aerosols were generated at a constant puff velocity of 1 L/min
and an inter puff interval of 10 s. Produced aerosols were
drawn from the mouth end of the ECIG device, and collected
through a quartz fiber filter.

Study design
Variables included power input (4.3 vs 10.8 W), puff duration
(4 vs 8 s), sugar (sorbitol, glucose and sucrose) and sucrose con-
centration (0, 0.03, 0.25, 0.63, 1.23 wt%). To control for
potential interactions with ECIG age and manufacturing vari-
ability, three devices of the same make and model were used,
and the experimental condition orders randomised. Results of
three atomisers were averaged for any given experimental
condition.

Analytical procedure
Filter extraction
The quartz filter loaded with ECIG aerosols is transferred to a
glass vial (4 mL) and subsequently extracted with 2 mL of ethyl
acetate after 30 min sonication. The filter is removed and the
extract is concentrated at room temperature under nitrogen flow
(5 L/min) to 0.5 mL.

SPE clean-up operating procedure
The clean-up method is optimised using standard solutions of
HMF and FA prepared in PG/VG matrix of 70/30 ratio. SPE is
conditioned using 10 mL hexane, the concentrated sample is
loaded and the elution solvent is optimised (chloroform/aceto-
nitrile: 8.5/1.5 mL) to retain PG and VG while eluting HMF
and FA at high recovery. The eluted solution is concentrated
down to 0.5 mL under nitrogen flow. The sample is spiked with
5-chloro-2-furfural (4 mg/mL) as internal standard (IS) before
injection to GC-MS.

Quality control and quality assurance
The repeatability of the method is evaluated by carrying out six
replicate extractions of 5, 40 and 120 mg/mL. The maximum %
relative standard deviation (RSD) is 15% and 3% for HMF and
FA, respectively. The recovery of the method at 5 and 40 mg/mL
is 90% for HMF and 60% for FA. Limits of detection and quanti-
fication, which are assessed using seven replicates, are 0.05 mg/
mL for HMF and 0.2 mg/mL for FA and 0.1 mg/mL for HMF and
0.7 mg/mL for FA, respectively. The quantitative analysis is
carried out using an extracted calibration curve with a linear
range of 0.1–100 mg/mL for HMF and 0.8–20 mg/mL for FA.
The corresponding regression coefficients are higher than 0.995.

GC-MS conditions
The GC-MS analysis is achieved on a Thermo-Finnigan Trace
GC-Ultra Polaris ITQ 900 coupled with an AS 3000 II autosam-
pler. A separation TraceGOLD-5MS (TG-5MS) column (60
m×0.25 mm, 0.25 μm film thickness) and electron impact

Figure 1 Average HMF yield normalised by TPM (mg/mg) in aerosols generated from laboratory-prepared sucrose, glucose and sorbitol liquids
vaped at 4.3 W (A) and 10.8 W (B) and at 8 and 4 s. * and ** indicate significant difference from the unflavoured liquid at p<0.05 and p<0.01,
respectively. N=3 measurements for each condition. FA, furfural; HMF, 5-hydroxymethylfurfural; PG, propylene glycol; TPM, total particulate matter;
VG, glycerin.
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ionisation with nominal electron energy of 70 eV are used. The
mobile phase is helium gas of 99.999% purity with a 1 mL/min
flow rate. The mode of injection is splitless. The injector tem-
perature is set at 200°C. The initial temperature was 40°C, hold
for 1 min, ramping at 30°C/min to 80°C, at 15°C/min to 150°C
and then at 20°C/min to 220°C. The quantitative analysis is per-
formed using selected ion mass (m/z=97, 96 and 129 for HMF,
FA and IS, respectively).

Statistical analysis
The effect of the power, puff duration and sweetener concentra-
tion on HMF and FA yields was assessed by a two-tailed distri-
bution and heteroscedastic t-test.

RESULTS
Both HMF and FA were reliably detected in the generated aero-
sols. Figures 1 and 2 show the average levels of HMF and FA
per mg of total particulate matter (TPM). FA yields were consid-
erably lower than HMF under all conditions. Prior to vaping, all
liquids showed no detectable quantities of furans. Battery power
output revealed a significant effect on the TPM normalised
yields of HMF generated from sucrose (p<0.01) and glucose
(p<0.02). In particular, 4.3 W generated higher HMF concen-
trations than 10.8 W. FA concentrations appear to show an
opposite trend, with greater power resulting in larger yields;
however, the large variances in repeated measures rendered the
differences statistically insignificant, except for the glucose con-
dition with an 8 s puff duration.

Relative to the unflavoured conditions, the sucrose and
glucose conditions generally had greater HMF and FA concen-
trations, while the sorbitol conditions showed similar results. At

4.3 W (figure 1A), these differences in HMF of sucrose and
glucose were significant, while those for the sorbitol condition
were not. Similar trends were observed at 10.8 W (figure 1B);
however, HMF yields for the sucrose condition were not signifi-
cantly different from the unflavoured condition due to the large
variance in repeated measures. In a similar comparison, sorbitol
produced no significant change in FA (figure 2), while the
sucrose and glucose conditions appear to have greater yields.
Only the 8 s puff duration and 10.8 W glucose condition
demonstrated a statistically significant difference. Unlike power,
puff durations have generated similar levels of furans.
Furthermore, both HMF and FA aerosol show a significant cor-
relation with sucrose concentration at both puff durations
(p<0.01 and p<0.001 at 4 s, and p<0.01 and p<0.001 at 8 s
for HMF and FA, respectively; figure 3).

To validate the method on a commercial ECIG matrix, a fla-
voured Vapor Fi was selected and spiked with a known concen-
tration of sucrose (13 mg/mL, equivalent to 1.23%). Three
replicate solutions were vaped at 5.0 W during a 4 s puff dur-
ation. Aerosols average concentrations (ng/mg) of HMF (4.26
±1.15) and FA (191.47±62.55) were comparable to what is
reported for the standard solutions. Chromatograms of the
spiked commercial e-liquid show no interferences preventing
the detection and quantification of furan compounds.

DISCUSSION
The thermal decomposition of saccharide molecules such as
sucrose, glucose and fructose has been under intense focus for
its wide application in food51–53 and as an alternate renewable
energy source.54–56 Hence, many studies have reported HMF as
a product of the caramelisation process57–60 and both HMF and

Figure 2 Average FA yield normalised by TPM (mg/mg) in aerosols generated using sucrose, glucose and sorbitol-containing liquids vaped at
4.3 W (A) and 10.8 W (B). * indicates significant difference from the unflavoured liquid at p<0.05. N=3 measurements for each condition. FA,
furfural; HMF, 5-hydroxymethylfurfural; PG, propylene glycol; TPM, total particulate matter; VG, glycerin.

Figure 3 Average level (mg/mg) of HMF (A) and FA (B) in the aerosol generated from different concentrations of sucrose in the e-liquid (n=3 per
condition). FA, furfural; HMF, 5-hydroxymethylfurfural.
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FA as thermal decomposition products under different type of
catalysts, temperature and pressure.61–67 Owing to the high
functionalisation of sugar molecules, the decomposition mech-
anism is thought to involve many side reactions,68–70 with HMF
being thermally generated from sucrose through the formation
of fructofuranosyl cation and from glucose through the cyclisa-
tion of 3-deoxyglucosone intermediates. FA is formed via an
additional dehydration product from the thermal decomposition
of sugar molecules as shown in figure 4.71–74

In ECIG systems, the presence of sucrose in some sweet com-
mercial brands has been reported.75 Our results show that HMF
and FA are formed when sucrose and glucose-containing liquids
are vaped. Minimal amounts, however, are produced with
sorbitol-containing liquids. Interestingly, lower battery power
led to higher HMF concentrations but lower FA concentrations.
This finding complicates the commonly held notion that lower
power output leads to lower heating filament temperatures and,
therefore, lower emissions of toxicants, which are formed by
thermal degradation, such as volatile aldehydes.24 48

Variances in repeated measures of HMF and FA were far
greater at higher power conditions. Such variability may have
been induced by the occurrence of hot spots on the heating
element where contact with the liquid-supplying wick was poor.
These variations are comparable to those previously observed
with aldehydes in ECIG aerosols.21 76–79

HMF and FA yields were also dependent on the initial
sucrose concentration. However, the non-linear correlation
between sucrose and the furan products (HMF and FA) indicates
that the mechanism of formation of furans is complex.80 So, in
addition to the initial sucrose concentration, the degradation of
sugar might be influenced by factors like the condition of the

coil, the maximum temperature reached during its activation
and the multistep mechanism of furan formation.

Considering the full range of the aerosol furan content inde-
pendent of the power, the puff duration, and the sugar type and
concentration (see online supplementary table S1), the exposure
level per puff of ECIG was compared with the aerosol levels in
tobacco cigarette and water pipe smoke (WPS) as shown in table
1. It is found that ECIG users are exposed to HMF and FA
levels similar to the ones reported for a combustible cigarette
and to the lower limits of water pipe smoke. Exposure to HMF
and FA raises several health concerns. The potential mutagenic
activity of HMF is attributed to one of its major toxin metabo-
lites known as 5-sulfoxymethylfurfural.46 47 As for FA, clear evi-
dence for carcinogenic activity and histopathological changes in
the respiratory epithelium of mice have been reported.45 44

Results indicate that potential toxicants are produced at con-
centrations lower than 0.26%, and therefore limits on the type
and content of sweet flavourants can be recommended. In add-
ition, increased emission in relation to power and puff duration
calls for stringent regulations on the ECIG design.

CONCLUSION
This study focuses on developing an analytical method to isolate
furans from the PG/VG matrix and assessing the emission of
toxic furans from sweet-flavoured ECIG solutions. Vaped under
different conditions, the levels of furans are found to be signifi-
cantly different from the PG/VG base solutions and are corre-
lated with battery power output and sugar concentration.
Surprisingly, no significant difference in yields was observed

Figure 4 A plausible pathway for the saccharide dehydration.

Table 1 The range of HMF and FA aerosol concentrations per puff
in ECIG, tobacco cigarette and water pipe

ECIG CIG WPS References

Sugar content
(% by mass)

0.03–1.91 0.21–22.09 50–70 This study57–59

HMF (mg/puff) 0.07–19.1 0.0–11 14.1–364.3 This study81 82

FA (mg/puff) 0.01–2.6 0.0–2.9 0.2–2.3 This study57 81 82

ECIG, electronic cigarette; FA, furfural; HMF, 5-hydroxymethylfurfural.

What this paper adds

The market of electronic cigarette has globally exploded with
the introduction of a wide range of flavourants. This comes at a
time when regulations and potential risk studies are still scarce.
This paper assessed the production of furans from sweetened
e-liquids. A systematic approach is taken to study the effect of
power, puff duration and sweetener type and percentage on the
yield of furans. A novel clean-up procedure is developed
followed by quantification via a new gas chromatography
tandem mass spectrometry method.
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between the 4 and 8 s puff durations. Per-puff emissions of
HMF and FA from ECIGs using sweetened solutions were com-
parable to those found in cigarette and water pipe smoke, sug-
gesting that sugar-based additives in ECIG solutions be
regulated.
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