Table 1 Chemicals that have been reported to occur in cigarette smoke (listed alphabetically), with cancer classifications, cancer potency unit risk factors and non-cancer reference exposure levels

Table width=A

<table>
<thead>
<tr>
<th>Chemical</th>
<th>IARC group*</th>
<th>Cal/EPA Cancer potency unit risk‡</th>
<th>USEPA Cancer potency unit risk‡</th>
<th>Non-cancer REL and target organ (µg/m³)</th>
<th>Mainstream yields—ISO (µg/cigarette)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Aminonaphthalene³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0096</td>
</tr>
<tr>
<td>2-Aminonaphthalene³</td>
<td>1</td>
<td>5.14E–04</td>
<td></td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>3-Aminobiphenyl³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0017</td>
</tr>
<tr>
<td>3-Ethenylpyridine¹³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>662</td>
</tr>
<tr>
<td>4-Aminobiphenyl³</td>
<td>1</td>
<td>6.00E–03</td>
<td></td>
<td></td>
<td>0.0012</td>
</tr>
<tr>
<td>Acetaldehyde³</td>
<td>2B</td>
<td>2.70E–06</td>
<td>2.20E-06</td>
<td>9 (resp)</td>
<td>680</td>
</tr>
<tr>
<td>Acetamide¹⁴</td>
<td>2B</td>
<td>2.00E–05</td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Acetic acid¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Acetone³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>Acrolein³</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>(resp/eye)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile³</td>
<td>2B</td>
<td>2.90E–04</td>
<td>6.80E–05</td>
<td>2 (resp)</td>
<td>8.9</td>
</tr>
<tr>
<td>Ammonia³</td>
<td></td>
<td></td>
<td></td>
<td>100 (resp)</td>
<td>12.2</td>
</tr>
<tr>
<td>Aniline¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td>1 (immune)</td>
<td>0.25</td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer Mainstream REL and organ</td>
<td>yields—ISO (µg/cigarette)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>o-Anisidine¹⁴</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthanthrene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
<tr>
<td>Anthracene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Arsenic¹⁵</td>
<td>1</td>
<td>3.30E–03</td>
<td>4.30E–03</td>
<td>0.03</td>
<td>0.7</td>
</tr>
<tr>
<td>(dev/card/ne rv) CEPA only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz[a]acridine¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz[c]acridine¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz(a)anthracene¹³</td>
<td>2A</td>
<td>1.10E–04</td>
<td></td>
<td></td>
<td>0.045</td>
</tr>
<tr>
<td>Benzene³</td>
<td>1</td>
<td>2.90E–05</td>
<td>7.80E–06</td>
<td>60 (30)</td>
<td>46.3</td>
</tr>
<tr>
<td>Benzo[a]fluorene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Benzo[b]fluorene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Benzo[c]fluorene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer Mainstream REL and target organ yields—ISO (µg/cigarette)</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>25 Benzo[g,h,i]perylene</td>
<td>3</td>
<td></td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>26 Benzo[c]phenanthrene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Benzo(a)pyrene</td>
<td>2A</td>
<td>1.10E-03</td>
<td></td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>28 Benzo[e]pyrene</td>
<td>3</td>
<td></td>
<td></td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>29 Benzo(b)fluoranthene</td>
<td>2B</td>
<td>1.10E-04</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>30 Benzo(j)fluoranthene</td>
<td>2B</td>
<td>1.10E-04</td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>31 Benz(k)fluoranthene</td>
<td>2B</td>
<td>1.10E-04</td>
<td></td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>32 Benzo[g,h,i]fluoranthene</td>
<td>3</td>
<td></td>
<td></td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡ (µg/m³)⁻¹</td>
<td>USEPA Cancer potency unit risk (µg/m³)⁻¹</td>
<td>Non-cancer REL and target organ (µg/cigarette)</td>
<td>Non-cancer Mainstream yields—ISO (µg/m³)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------------------------------------</td>
<td>------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Beryllium¹⁵</td>
<td>1</td>
<td>2.40E–03</td>
<td>2.40E–03</td>
<td></td>
<td>0.00025</td>
</tr>
<tr>
<td>Bicyclohexyl¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3 – Butadiene³</td>
<td>2A</td>
<td>1.70E–04</td>
<td>3.00E–05</td>
<td>8</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(repro/dev)</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.4</td>
</tr>
<tr>
<td>Butyrolactone¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cadmium³</td>
<td>1</td>
<td>4.20E–03</td>
<td>1.80E–03</td>
<td>0.01</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(kidney/resp)</td>
<td></td>
</tr>
<tr>
<td>Captan¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Carbazole¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Carbon Monoxide³¹⁷,¹⁸</td>
<td></td>
<td>10,000</td>
<td>13,609</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(card)</td>
<td></td>
</tr>
<tr>
<td>Catechol³</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td>88.2</td>
</tr>
<tr>
<td>Chlorinated dioxins</td>
<td>1</td>
<td>3.7E+01</td>
<td></td>
<td>0.00004</td>
<td>0.0000001</td>
</tr>
<tr>
<td>and furans⁹§</td>
<td></td>
<td></td>
<td></td>
<td>(dev/immun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e/resp/end/al</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>imentary)</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer REL and target organ (µg/m³)</td>
<td>Mainstream yields—ISO (µg/cigarette)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Cholesterol¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Chromium</td>
<td>1</td>
<td>1.50E−01</td>
<td>1.20E−02</td>
<td>0.0008</td>
<td>0.0042</td>
</tr>
<tr>
<td>(hexavalent)³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysene¹³,¹⁴</td>
<td>3</td>
<td>1.10E−05</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Coronene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Coumarin¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde³</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>14.2</td>
</tr>
<tr>
<td>Cyclohexane¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclopentane¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT¹⁴</td>
<td>2B</td>
<td>9.71E−05</td>
<td>9.70E−05</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>Dibenzo(a,h)acridine¹³</td>
<td>2B</td>
<td>1.10E−04</td>
<td></td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Dibenzo(a,j)acridine¹³</td>
<td>2B</td>
<td>1.10E−04</td>
<td></td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td>Dibenz[a,c]anthracene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene¹³</td>
<td>2A</td>
<td>1.20E−03</td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC</td>
<td>Cal/EPA</td>
<td>USEPA</td>
<td>Non-cancer Mainstream</td>
<td>REL and yields—ISO</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer</td>
<td>Cancer</td>
<td></td>
<td>(µg/cigarette)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>potency unit</td>
<td>potency unit</td>
<td>target</td>
<td>(µg/m³)^-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk‡</td>
<td>risk</td>
<td>organ</td>
<td></td>
</tr>
<tr>
<td>57 Dibenzo[a,j]anthracene</td>
<td>3</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 7H-Dibenzo(c,g)-carbazole</td>
<td>2B</td>
<td>1.10E–03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 Dibenzo[a,e]fluoranthene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Dibenzo[a,e]pyrene</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 Dibenzo(a,i)pyrene</td>
<td>2B</td>
<td>1.10E–02</td>
<td></td>
<td></td>
<td>0.0025</td>
</tr>
<tr>
<td>62 Dibenzo(a,l)pyrene</td>
<td>2B</td>
<td>1.10E–02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 Dimethylamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 1,1-Dimethylhydrazine</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 2,3-Dimethylmaleic anhydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit</td>
<td>USEPA Cancer potency unit</td>
<td>USEPA Non-cancer REL and risk‡</td>
<td>USEPA Non-cancer Mainstream target (µg/cigarette)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>1,4-Dimethylphenanthrene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Dimethylpyrazine</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endrin</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylamine</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugenol</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>300</td>
<td>6.00E–06</td>
<td>1.30E–05</td>
<td>2</td>
<td>33.0</td>
</tr>
<tr>
<td>Formic acid</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furfural</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer Mainstream REL and target organ yields—ISO (μg/cigarette)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Hydrazine(^{14})</td>
<td>2B</td>
<td>4.90E–03</td>
<td>4.90E–03</td>
<td>0.2</td>
<td>0.034 (aliment/end)</td>
</tr>
<tr>
<td>Hydrogen cyanide(^{3})</td>
<td></td>
<td></td>
<td></td>
<td>3 (card)</td>
<td>118.4</td>
</tr>
<tr>
<td>Hydrogen sulphide(^{16})</td>
<td></td>
<td></td>
<td></td>
<td>0.9 (resp)</td>
<td></td>
</tr>
<tr>
<td>Hydroquinone(^{3})</td>
<td>3</td>
<td></td>
<td></td>
<td>72.2</td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyrene(^{15,14})</td>
<td>2B</td>
<td>1.10E–04</td>
<td></td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Isoprene(^{3})</td>
<td>2B</td>
<td></td>
<td></td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Lead(^{3})</td>
<td>2B</td>
<td>1.20E–05</td>
<td></td>
<td>0.0128</td>
<td></td>
</tr>
<tr>
<td>m-+p-Cresol(^{3})</td>
<td></td>
<td></td>
<td></td>
<td>4 (card)</td>
<td>14</td>
</tr>
<tr>
<td>Malathion(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Maleic hydrazide(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Mercury(^{3})</td>
<td></td>
<td></td>
<td></td>
<td>0.3 (nerv)</td>
<td>0.0052</td>
</tr>
<tr>
<td>Methanol(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Methyl acrylate(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Methyl catechol(^{14})</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Methyl chloride(^{14})</td>
<td></td>
<td></td>
<td></td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit</td>
<td>USEPA Cancer potency unit</td>
<td>Risk‡ (µg/m³⁻¹)</td>
<td>USEPA Non-cancer REL and target organ (µg/m³)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>1-Methylchrysene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>2-Methylchrysene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>3-Methylchrysene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>4-Methylchrysene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methylchrysene¹⁵,¹⁴ 2B</td>
<td>1.10E–03</td>
<td></td>
<td></td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>6-Methylchrysene¹⁴</td>
<td>3</td>
<td></td>
<td></td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000 (repro) 54.8</td>
</tr>
<tr>
<td>Methylamine¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>2-Methylfluoranthene¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methylfluoranthene¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Methylphenanthrene¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isocyanate¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Methylpyrazines¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>2-Methylpyridine¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methylpyridine¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit</td>
<td>USEPA Cancer potency unit</td>
<td>USEPA Non-cancer REL and target organ (µg/m³)</td>
<td>USEPA Non-cancer Mainstream yields—ISO (µg/cigarette)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>4-Methylpyridine</td>
<td>14</td>
<td>3</td>
<td>0.05</td>
<td>0.011 (resp/immune)</td>
<td></td>
</tr>
<tr>
<td>1-Methylpyrrolidin</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>3</td>
<td>2.60E–04</td>
<td>2.40E–04</td>
<td>0.05</td>
<td>0.011 (resp/immune)</td>
</tr>
<tr>
<td>Nicotine</td>
<td>3</td>
<td>810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>3</td>
<td>37.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>14</td>
<td>20 (resp)</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Nitro-N-butane</td>
<td>14</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitroethane</td>
<td>14</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitromethane</td>
<td>14</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Nitro-N-pentane</td>
<td>14</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Nitropropane</td>
<td>14</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nitropropane</td>
<td>14</td>
<td>2B</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Nitrosoanabasine (NAB)</td>
<td>14</td>
<td>3</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Nitrosoanatabine (NAT)</td>
<td>14</td>
<td>3</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer Mainstream REL and target organ yields—ISO (µg/cigarette)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>122 4-N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK)(^{14})</td>
<td>2B</td>
<td></td>
<td></td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>123 N-Nitroso-N-dibutylamine(^{14})</td>
<td>2B</td>
<td>3.14E–03</td>
<td>1.60E–03</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>124 N-Nitrosodiethanolamine(^{13})</td>
<td>2B</td>
<td>8.00E–04</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>125 N-Nitrosodiethylamine (NDEA)(^{13})</td>
<td>2A</td>
<td>1.03E–02</td>
<td>4.30E–02</td>
<td>0.0083</td>
<td></td>
</tr>
<tr>
<td>126 N-Nitrosodimethylamine (NDMA)(^{13})</td>
<td>2A</td>
<td>4.57E–03</td>
<td>1.40E–02</td>
<td>0.0244</td>
<td></td>
</tr>
<tr>
<td>127 N-Nitrosoethyl-methylamine(^{15})</td>
<td>2B</td>
<td>6.29E–03</td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC group*</td>
<td>Cal/EPA Cancer potency unit risk‡</td>
<td>USEPA Cancer potency unit risk‡</td>
<td>Non-cancer Mainstream REL and organ yields—ISO (µg/cigarette)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>128 N-Nitrosomorpholine(^{14})</td>
<td>2B</td>
<td>1.91E–03</td>
<td>(µg/m³)(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129 N-Nitrosonornicotine (NNN)(^{13})</td>
<td>2B</td>
<td>4.00E–04</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 N-Nitrosopiperidine(^{14})</td>
<td>2B</td>
<td>2.69E–03</td>
<td>0.0045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131 N-Nitroso-N-propylamine(^{14})</td>
<td>2B</td>
<td>2.00E–03</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132 N-Nitrosopyrrolidine (NP)(^{13})</td>
<td>2B</td>
<td>6.00E–03 6.10E–04</td>
<td>0.113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133 O–Cresol(^{3})</td>
<td></td>
<td></td>
<td></td>
<td>4 (card) 5.7</td>
<td></td>
</tr>
<tr>
<td>134 Particulate matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135 Perylene(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>136 Phenanthrene(^{14})</td>
<td>3</td>
<td></td>
<td></td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>137 Phenol(^{3})</td>
<td></td>
<td></td>
<td></td>
<td>600 26.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(aliment/car kidney/nerv)</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>IARC</td>
<td>Cal/EPA</td>
<td>USEPA</td>
<td>Non-cancer Mainstream</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>group*</td>
<td>Cancer</td>
<td>Cancer</td>
<td>REL and yields—ISO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>potency unit</td>
<td>potency unit</td>
<td>target</td>
<td>(µg/cigarette)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk‡</td>
<td>risk</td>
<td>organ</td>
<td>(µg/m³)</td>
<td>(µg/m³)</td>
</tr>
<tr>
<td>138 N-Phenyl-2-naphthylamine^1^</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139 Polonium-210^1^</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 Propionaldehyde^3^</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141 Propylene^1^</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142 Pyrene^1^</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143 Pyridine^3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144 Pyrrole^17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 Pyrrolidine^14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146 Resorcinol^14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147 Quinoline^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148 Selenium^1^</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149 Styrene^3</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 Succinic anhydride^14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151 Toluene^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152 2-Toluidine^13</td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^1^ IARC classification, ^2^ Cal/EPA classification, ^3^ USEPA classification, ^‡^ risk for the USEPA potency unit.
<table>
<thead>
<tr>
<th>Chemical</th>
<th>IARC group*</th>
<th>Cal/EPA Cancer potency unit</th>
<th>USEPA Cancer potency unit</th>
<th>Non-cancer REL and target organ yields—ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethylamine</td>
<td>1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphenylene</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urethane</td>
<td>2B</td>
<td>2.86E–04</td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>2B</td>
<td></td>
<td></td>
<td>200 (resp)</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1</td>
<td>7.80E–05</td>
<td>4.40E–06</td>
<td>0.0086</td>
</tr>
<tr>
<td>Xylenes</td>
<td></td>
<td></td>
<td></td>
<td>200 (nerv/resp)</td>
</tr>
</tbody>
</table>

†1, known human carcinogens; 2A, probable human carcinogens; 2B, possible human carcinogens; 3, unclassifiable as a human carcinogen

‡Unit risks are those reported by the California EPA www.oehha.ca.gov, or the USEPA www.epa.gov/iris.[5, 11] The non-cancer RELs and RfDs from Cal/EPA and USEPA are identical with the exception of benzene and arsenic.

The values from reference[3] were obtained through taking the average yield from 11 leading brands reported on the British Columbia Ministry of Health website in 2000. Brands included: du Maurier King Size; du Maurier Light King Size; du Maurier Regular; Player’s Regular; Player’s Light Regular; Player’s Extra Light Regular; Player’s Light King Size; Matinee Extra Mild King Size; Rothman’s King Size; Export A Regular; Export A Light Regular.
§this potency is presented but was not used in the final analysis as dioxins were assumed to not be non-threshold carcinogens and inappropriate for the current analysis.

resp, respiratory system; repro/dev, reproductive or developmental processes; aliment, alimentary system (GI tract, liver); immune, immune system; card, cardiovascular system; nerv, nervous system; end, endocrine system