Skip to main content
Log in

Should one use smokeless tobacco in smoking cessation programs?

A rational addiction approach

  • Original Papers
  • Published:
The European Journal of Health Economics, formerly: HEPAC Aims and scope Submit manuscript

Abstract

The rational addiction model is often used for empirical analysis of the demand for addictive goods. We propose an extension of the model to include two goods, cigarettes and Swedish moist snuff, locally known as snus. Demand equations are estimated using aggregated annual time series data (in first differences) for the period 1964–1997. The findings from the dataset used give some support to the rational addiction hypothesis. The cross-price elasticities are negative, which indicates that taking snus contributes to increased smoking. Thus it is not advisable to encourage the use of the less harmful snus in smoking cessation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker GS, Murphy KM (1988) A theory of rational addiction. J Polit Econ 96:675–700

    Article  Google Scholar 

  2. Becker GS, Grossman M, Murphy KM (1994) An empirical analysis of cigarette addiction. Am Econ Rev 84:396–418

    Google Scholar 

  3. Bolinder GM, Ahlborg BO, Lindell JH (1992) Use of smokeless tobacco: blood pressure elevation and other health hazards found in a large-scale population survey. J Intern Med 232:327–334

    CAS  Google Scholar 

  4. Cameron S (1998) Estimation of the demand for cigarettes: a review of the literature. Econ Issues 3:51–71

    Google Scholar 

  5. Chaloupka FJ (1991) Rational addictive behavior and cigarette smoking. J Polit Econ 99:722–742

    Article  Google Scholar 

  6. Chaloupka FJ, Warner KE (2000) The economics of smoking. In: Culyer AJ, Newhouse JP (eds) Handbook of health economics, chap 29. North Holland: Amsterdam

    Google Scholar 

  7. Dahlgren G (1997) Determinants of the burden of disease in the European Union. Report no F24. National Institute of Public Health: Stockholm

    Google Scholar 

  8. Enders W (1995) Applied econometric time series. Wiley: New York

  9. Fagerström KO, Ramström L (1998) Can smokeless tobacco rid us of tobacco smoke? Am J Med 104:501–503

    Article  PubMed  Google Scholar 

  10. Huhtasaari F, Asplund K, Lundberg V, Stegamayr B, Wester PO (1992) Tobacco and myocardial infarction: is snuff less dangerous than cigarettes? BMJ 305:1252–1256

    CAS  Google Scholar 

  11. Jiménez-Martín S, Labeaga JM, López A (1998) Participation, heterogeneity and dynamics in tobacco consumption: evidence from cohort data. Health Econ 7:401–414

    Article  PubMed  Google Scholar 

  12. Melkersson M (2002) Smoking habits and quitting costs in the presence of a close substitute. SOFI, Stockholm University: Stockholm

  13. Schildt E-B, Eriksson M, Hardell L, Magnuson A (1998) Oral snuff, smoking habits and alcohol consumption in relation to oral cancer in a Swedish case-control study. Int J Cancer 77:341–346

    CAS  Google Scholar 

  14. Suranovic SM, Goldfarb RS, Leonard TC (1999) An economic theory of cigarette addiction. J Health Econ 18:1–29

    Google Scholar 

  15. Tauras JA (1999) The transition to smoking cessation: evidence from multiple failure duration analysis. NBER working paper no 7412

    Google Scholar 

  16. Tilashalski K, Rodu B, Cole P (1998) A pilot study of smokeless tobacco in smoking cessation. Am J Med 104:456–459

    CAS  Google Scholar 

Download references

Acknowledgements

Valuable comments and suggestions from participants at seminars at Umeå University, Stockholm University (SOFI), and Luleå University of Technology are gratefully acknowledged. We are grateful to Sam Cameron for providing us with helpful comments and suggestions. Finally, we thank Suzanne Grahn at Swedish Match for providing the time series of snus prices. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Bask.

Appendix

Appendix

Derivation of Eq. 5 and Eq. 6

The instantaneous utility function can be approximated by:

$$ \begin{array}{*{20}l} {{U{\left( \bullet \right)}} \hfill} & { = \hfill} & {{\alpha _{1} c{\left[ t \right]} + \alpha _{2} s{\left[ t \right]} + \alpha _{3} G{\left[ t \right]} + \alpha _{4} H{\left[ t \right]} + \alpha _{5} y{\left[ t \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{\frac{1} {2}u_{{cc}} c^{2} {\left[ t \right]} + \frac{1} {2}u_{{ss}} s^{2} {\left[ t \right]} + \frac{1} {2}u_{{GG}} G^{2} {\left[ t \right]} + \frac{1} {2}u_{{HH}} H^{2} {\left[ t \right]} + \frac{1} {2}u_{{yy}} y^{2} {\left[ t \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{u_{{cs}} c{\left[ t \right]}s{\left[ t \right]} + u_{{cG}} c{\left[ t \right]}G{\left[ t \right]} + u_{{cH}} c{\left[ t \right]}H{\left[ t \right]} + u_{{sG}} s{\left[ t \right]}G{\left[ t \right]} + u_{{sH}} s{\left[ t \right]}H{\left[ t \right]} + u_{{GH}} G{\left[ t \right]}H{\left[ t \right]},} \hfill} \\ \end{array} $$
(9)

where the αi values are positive parameters, and the uij values are parameters with the same sign as their respective derivatives, for example, ucc <0 since Ucc <0. The maximization problem can be transformed to be a function of cigarettes and snus only:

$$ V^{*}{\left( \bullet \right)} = \gamma W - \frac{{{\left( {\gamma - \alpha _{5} } \right)}^{2} }} {{2ru_{{yy}} }} + {\mathop {\max }\limits_{c{\left[ t \right]},s{\left[ t \right]}} }{\sum\limits_{t = 1}^\infty {{\left( {1 + r} \right)}^{{ - t}} F{\left( {c{\left[ t \right]},s{\left[ t \right]},G{\left[ t \right]},H{\left[ t \right]}} \right)},} } $$
(10)

given c[0] and s[0], where:

$$ \begin{array}{*{20}l} {{F{\left( \bullet \right)}} \hfill} & { = \hfill} & {{\alpha _{1} c{\left[ t \right]} + \alpha _{2} s{\left[ t \right]} + \alpha _{3} {\left( {c{\left[ {t - 1} \right]}} + \delta s{\left[ {t - 1} \right]}\right)} + \alpha _{4} {\left( {1 - \delta } \right)}s{\left[ {t - 1} \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{\frac{1} {2}u_{{cc}} c^{2} {\left[ t \right]} + \frac{1} {2}u_{{ss}} s^{2} {\left[ t \right]} + \frac{1} {2}u_{{GG}} {\left( {c{\left[ {t - 1} \right]}} + \delta s{\left[ {t - 1} \right]} \right)}^{2} + \frac{1} {2}u_{{HH}} {\left( {1 - \delta } \right)}^{2} s^{2} {\left[ {t - 1} \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{u_{{cs}} c{\left[ t \right]}s{\left[ t \right]} + u_{{cG}} c{\left[ t \right]}{\left( {c{\left[ {t - 1} \right]} + \delta s{\left[ {t - 1} \right]}} \right)} + u_{{cH}} c{\left[ t \right]}{\left( {1 - \delta } \right)}s{\left[ {t - 1} \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{u_{{sG}} s{\left[ t \right]}{\left( {c{\left[ {t - 1} \right]} + \delta s{\left[ {t - 1} \right]}} \right)} + u_{{sH}} s{\left[ t \right]}{\left( {1 - \delta } \right)}s{\left[ {t - 1} \right]} + } \hfill} \\ {{} \hfill} & {{} \hfill} & {{u_{{GH}} {\left( {c{\left[ {t - 1} \right]} + \delta s{\left[ {t - 1} \right]}} \right)}{\left( {1 - \delta } \right)}s{\left[ {t - 1} \right]} - \gamma {\left( {p_{c} {\left[ t \right]}c{\left[ t \right]} + p_{s} {\left[ t \right]}s{\left[ t \right]}} \right)}.} \hfill} \\ \end{array} $$
(11)

The first-order condition with respect to c[t] is:

$$ \frac{{\partial V^{*} {\left( \bullet \right)}}} {{\partial c{\left[ t \right]}}} = \frac{{\partial F{\left( {c{\left[ t \right]},s{\left[ t \right]},G{\left[ t \right]},H{\left[ t \right]}} \right)}}} {{\partial c{\left[ t \right]}}} + \frac{1} {{1 + r}}\frac{{\partial F{\left( {c{\left[ {t + 1} \right]},s{\left[ {t + 1} \right]},G{\left[ {t + 1} \right]},H{\left[ {t + 1} \right]}} \right)}}} {{\partial c{\left[ t \right]}}} = 0, $$
(12)

where:

$$ \frac{{\partial F{\left( {c{\left[ t \right]},s{\left[ t \right]},G{\left[ t \right]},H{\left[ t \right]}} \right)}}} {{\partial c{\left[ t \right]}}} = \alpha _{1} + u_{{cc}} c{\left[ t \right]} + u_{{cs}} s{\left[ t \right]} + u_{{cG}} {\left( {c{\left[ {t - 1} \right]} + \delta s{\left[ {t - 1} \right]}} \right)} + u_{{cH}} {\left( {1 - \delta } \right)}s{\left[ {t - 1} \right]} - \gamma p_{c} {\left[ t \right]}, $$
(13)

and:

$$ \frac{{\partial F{\left( {c{\left[ {t + 1} \right]},s{\left[ {t + 1} \right]},G{\left[ {t + 1} \right]},H{\left[ {t + 1} \right]}} \right)}}} {{\partial c{\left[ t \right]}}} = \alpha _{3} + u_{{GG}} {\left( {c{\left[ t \right]} + \delta s{\left[ t \right]}} \right)} + u_{{cG}} c{\left[ {t + 1} \right]} + u_{{sG}} s{\left[ {t + 1} \right]} + u_{{GH}} {\left( {1 - \delta } \right)}s{\left[ t \right]}. $$
(14)

Solve these equations for c[t]:

$$ c{\left[ t \right]} = \beta _{{10}} + {\left( {1 + r} \right)}\beta _{{11}} c{\left[ {t - 1} \right]} + \beta _{{11}} c{\left[ {t + 1} \right]} + \beta _{{12}} s{\left[ {t - 1} \right]} + \beta _{{13}} s{\left[ t \right]} + \beta _{{14}} s{\left[ {t + 1} \right]} + \beta _{{15}} p_{c} {\left[ t \right]}\;, $$

where:

$$ \left\{ {\begin{array}{*{20}l} {{\beta _{{10}} = - \frac{{{\left( {1 + r} \right)}\alpha _{1} + \alpha _{3} }} {{{\left( {1 + r} \right)}u_{{cc}} + u_{{GG}} }} > 0,} \hfill} & {{\beta _{{11}} = - \frac{{u_{{cG}} }} {{{\left( {1 + r} \right)}u_{{cc}} + u_{{GG}} }} > 0,} \hfill} \\ {{\beta _{{12}} = - \frac{{{\left( {1 + r} \right)}{\left( {\delta u_{{cG}} + {\left( {1 - \delta } \right)}u_{{cH}} } \right)}}} {{{\left( {1 + r} \right)}u_{{cc}} + u_{{GG}} }} > 0,} \hfill} & {{\beta _{{13}} = - \frac{{{\left( {1 + r} \right)}u_{{cs}} + \delta u_{{GG}} + {\left( {1 - \delta } \right)}u_{{GH}} }} {{{\left( {1 + r} \right)}u_{{cc}} + u_{{GG}} }} < 0,} \hfill} \\ {{\beta _{{14}} = - \frac{{u_{{sG}} }} {{{\left( {1 + r} \right)}u_{{cc}} + u_{{GG}} }} > 0,} \hfill} & {{\beta _{{15}} = \frac{{{\left( {1 + r} \right)}\gamma }} {{{\left( {1 + r} \right)}U_{{cc}} + U_{{GG}} }} < 0.} \hfill} \\ \end{array} } \right. $$
(15)

Finally, derive the first order condition with respect to s[t], i.e.: \( \frac{{\partial {\text{V}}^{ * } ( \cdot )}} {{\partial s{\left[ t \right]}}} = 0 \), and solve for s[t]:

$$ s{\left[ t \right]} = \beta _{{20}} + {\left( {1 + r} \right)}\beta _{{21}} s{\left[ {t - 1} \right]} + \beta _{{21}} s{\left[ {t + 1} \right]} + \beta _{{22}} c{\left[ {t - 1} \right]} + \beta _{{23}} c{\left[ t \right]} + \beta _{{24}} c{\left[ {t + 1} \right]} + \beta _{{25}} p_{s} {\left[ t \right]}\;, $$

where:

$$ \left\{ {\begin{array}{*{20}l} {{\beta _{{20}} = - \frac{{{\left( {1 + r} \right)}\alpha _{2} + \delta \alpha _{3} + {\left( {1 - \delta } \right)}\alpha _{4} }} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} > 0} \hfill} \\ {{\beta _{{21}} = - \frac{{ \delta u_{{sG}} + {\left( {1 - \delta } \right)}u_{{sH}}}} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} > 0} \hfill} \\ {{\beta _{{22}} = - \frac{{{\left( {1 + r} \right)}u_{{sG}} }} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} > 0} \hfill} \\ {{\beta _{{23}} = - \frac{{{\left( {1 + r} \right)}u_{{cs}} + \delta u_{{GG}} + {\left( {1 - \delta } \right)}u_{{GH}} }} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} < 0} \hfill} \\ {{\beta _{{24}} = - \frac{{\delta u_{{cG}} + {\left( {1 - \delta } \right)}u_{{cH}} }} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} > 0} \hfill} \\ {{\beta _{{25}} = \frac{{{\left( {1 + r} \right)}\gamma }} {{{\left( {1 + r} \right)}u_{{ss}} + \delta ^{2} u_{{GG}} + {\left( {1 - \delta } \right)}^{2} u_{{HH}} + 2\delta {\left( {1 - \delta } \right)}u_{{GH}} }} < 0} \hfill} \\ \end{array} } \right. \;.$$
(16)

Parameters in Eq. 7 and Eq. 8

The parameters are:

$$ \left\{ {\begin{array}{*{20}l} {{\beta _{{30}} = \frac{{\beta _{{10}} + \beta _{{13}} \beta _{{20}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{31}} = \frac{{{\left( {1 + r} \right)}\beta _{{11}} + \beta _{{13}} \beta _{{22}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{32}} = \frac{{\beta _{{11}} + \beta _{{13}} \beta _{{24}} }} {{1 - \beta _{{13}} \beta _{{23}} }}} \hfill} & {{\beta _{{33}} = \frac{{\beta _{{12}} + {\left( {1 + r} \right)}\beta _{{13}} \beta _{{21}} }} {{1 - \beta _{{13}} \beta _{{23}} }}} \hfill} \\ {{\beta _{{34}} = \frac{{\beta _{{13}} \beta _{{21}} + \beta _{{14}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{35}} = \frac{{\beta _{{15}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{36}} = \frac{{\beta _{{13}} \beta _{{25}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{} \hfill} \\ \end{array} } \right. $$
(17)

and:

$$ \left\{ {\begin{array}{*{20}l} {{\beta _{{40}} = \frac{{\beta _{{10}} \beta _{{23}} + \beta _{{20}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{41}} = \frac{{\beta _{{12}} \beta _{{23}} + {\left( {1 + r} \right)}\beta _{{21}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{42}} = \frac{{\beta _{{14}} \beta _{{23}} + \beta _{{21}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{43}} = \frac{{{\left( {1 + r} \right)}\beta _{{11}} \beta _{{23}} + \beta _{{22}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} \\ {{\beta _{{44}} = \frac{{\beta _{{11}} \beta _{{23}} + \beta _{{24}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{45}} = \frac{{\beta _{{25}} }} {{1 - \beta _{{13}} \beta _{{23}} }},} \hfill} & {{\beta _{{46}} = \frac{{\beta _{{15}} \beta _{{23}} }} {{1 - \beta _{{13}} \beta _{{23}} }}.} \hfill} & {{} \hfill} \\ \end{array} } \right. $$
(18)

Long-run demand elasticities

All the price and quantity variables presented below, for example, pc and c, are prices and quantities in steady state. In the estimations of the long-run demand elasticities, we assume that these steady-state values equalize the mean values in the dataset. The long-run demand elasticities are:

$$ \left\{ {\begin{array}{*{20}l} {{\frac{{\partial c}} {{\partial p_{c} }}\frac{{p_{c} }} {c} = \frac{{\beta _{{15}} {\left( {1 - \beta _{{21}} - \beta ^{*}_{{21}} } \right)}}} {{{\left( {1 - \beta _{{11}} - \beta ^{*}_{{11}} } \right)}{\left( {1 - \beta _{{21}} - \beta ^{*}_{{21}} } \right)} - {\left( {\beta _{{12}} + \beta _{{13}} + \beta _{{14}} } \right)}{\left( {\beta _{{22}} + \beta _{{23}} + \beta _{{24}} } \right)}}}\frac{{p_{c} }} {c}} \hfill} \\ {{\frac{{\partial s}} {{\partial p_{s} }}\frac{{p_{s} }} {s} = \frac{{{\left( {1 - \beta _{{11}} - \beta ^{*}_{{11}} } \right)}\beta _{{25}} }} {{{\left( {1 - \beta _{{11}} - \beta ^{*}_{{11}} } \right)}{\left( {1 - \beta _{{21}} - \beta ^{*}_{{21}} } \right)} - {\left( {\beta _{{12}} + \beta _{{13}} + \beta _{{14}} } \right)}{\left( {\beta _{{22}} + \beta _{{23}} + \beta _{{24}} } \right)}}}\frac{{p_{s} }} {s}} \hfill} \\ {{\frac{{\partial c}} {{\partial p_{s} }}\frac{{p_{s} }} {c} = \frac{{{\left( {\beta _{{12}} + \beta _{{13}} + \beta _{{14}} } \right)}\beta _{{25}} }} {{{\left( {1 - \beta _{{11}} - \beta ^{*}_{{11}} } \right)}{\left( {1 - \beta _{{21}} - \beta ^{*}_{{21}} } \right)} - {\left( {\beta _{{12}} + \beta _{{13}} + \beta _{{14}} } \right)}{\left( {\beta _{{22}} + \beta _{{23}} + \beta _{{24}} } \right)}}}\frac{{p_{s} }} {c}} \hfill} \\ {{\frac{{\partial s}} {{\partial p_{c} }}\frac{{p_{c} }} {s} = \frac{{\beta _{{15}} {\left( {\beta _{{22}} + \beta _{{23}} + \beta _{{24}} } \right)}}} {{{\left( {1 - \beta _{{11}} - \beta ^{*}_{{11}} } \right)}{\left( {1 - \beta _{{21}} - \beta ^{*}_{{21}} } \right)} - {\left( {\beta _{{12}} + \beta _{{13}} + \beta _{{14}} } \right)}{\left( {\beta _{{22}} + \beta _{{23}} + \beta _{{24}} } \right)}}}\frac{{p_{c} }} {s}} \hfill} \\ \end{array} } \right., $$
(19)

where: \( \beta ^{ * }_{{11}} = {\left( {1 + r} \right)}\beta _{{11}} \;\;{\text{and}}\;\;\beta ^{ * }_{{21}} = {\left( {1 + r} \right)}\beta _{{21}} , \) i.e., we relax the parameter restriction in the model. The long-run demand elasticities, based on the “semireduced” system, are:

$$ \left\{ {\begin{array}{*{20}l} {{\frac{{\partial c}} {{\partial p_{c} }}\frac{{p_{c} }} {c} = \frac{{{\left( {\beta _{{33}} + \beta _{{34}} } \right)}\beta _{{46}} + \beta _{{35}} {\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)}}} {{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}{\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)} - {\left( {\beta _{{33}} + \beta _{{34}} } \right)}{\left( {\beta _{{43}} + \beta _{{44}} } \right)}}}\frac{{p_{c} }} {c}} \hfill} \\ {{\frac{{\partial s}} {{\partial p_{s} }}\frac{{p_{s} }} {s} = \frac{{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}\beta _{{45}} + \beta _{{36}} {\left( {\beta _{{43}} + \beta _{{44}} } \right)}}} {{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}{\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)} - {\left( {\beta _{{33}} + \beta _{{34}} } \right)}{\left( {\beta _{{43}} + \beta _{{44}} } \right)}}}\frac{{p_{s} }} {s}} \hfill} \\ {{\frac{{\partial c}} {{\partial p_{s} }}\frac{{p_{s} }} {c} = \frac{{{\left( {\beta _{{33}} + \beta _{{34}} } \right)}\beta _{{45}} + \beta _{{36}} {\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)}}} {{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}{\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)} - {\left( {\beta _{{33}} + \beta _{{34}} } \right)}{\left( {\beta _{{43}} + \beta _{{44}} } \right)}}}\frac{{p_{s} }} {c}} \hfill} \\ {{\frac{{\partial s}} {{\partial p_{c} }}\frac{{p_{c} }} {s} = \frac{{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}\beta _{{46}} + \beta _{{35}} {\left( {\beta _{{43}} + \beta _{{44}} } \right)}}} {{{\left( {1 - \beta _{{31}} - \beta _{{32}} } \right)}{\left( {1 - \beta _{{41}} - \beta _{{42}} } \right)} - {\left( {\beta _{{33}} + \beta _{{34}} } \right)}{\left( {\beta _{{43}} + \beta _{{44}} } \right)}}}\frac{{p_{c} }} {s}} \hfill} \\ \end{array} } \right.. $$
(20)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bask, M., Melkersson, M. Should one use smokeless tobacco in smoking cessation programs?. HEPAC 4, 263–270 (2003). https://doi.org/10.1007/s10198-003-0197-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10198-003-0197-y

Keywords

Navigation