Article Text
Abstract
Objective To compare predictive values of small-for-gestational-age (SGA) by different measures for secondhand smoke (SHS) exposure during pregnancy and to develop and validate a prediction model for SGA using SHS exposure along with sociodemographic and pregnancy factors.
Methods We compared the predictability of different measures of SHS exposure during pregnancy for SGA among 545 Chinese pregnant women, and then used the optimal SHS measure along with other clinically available factors to develop and validate a prediction model for SGA. We fit logistic regression models to predict SGA by single measures of SHS exposure (self-report, serum cotinine and CYP2A6*4) and different combinations (self-report+cotinine, cotinine+CYP2A6*4, self-report+CYP2A6*4 and self-report+cotinine+CYP2A6*4).
Results We found that self-reported SHS exposure alone predicted SGA (area under the receiver operating characteristic curve or area under the receiver operating curve (AUROC), 0.578) better than the other two single measures (cotinine, 0.547; CYP2A6*4, 0.529) or as accurately as combined SHS measures (0.545–0.584). The final prediction model that contained self-reported SHS exposure, prepregnancy body mass index, gestational weight gain velocity during the second and third trimesters, gestational diabetes, gestational hypertension and the third-trimester biparietal diameter Z-score could predict SGA fairly accurately (AUROC, 0.698).
Conclusions Self-reported SHS exposure at peribirth performs better in predicting SGA than a single measure of serum cotinine at the same time, although repeated biochemical cotinine assessments throughout pregnancy may be optimal. Our simple prediction model is fairly accurate and can be potentially used in routine prenatal care.
- Secondhand smoke
- Cotinine
- Smoking Caused Disease