LETTERS TO THE EDITOR

Letters intended for publication should be a maximum of 500 words, 10 references, and one table or figure, and should be sent to the editor at the address given on the inside front cover. Those responding to articles or correspondence published in the journal should be received within six weeks of publication.

Whose standard is it, anyway?

EDITOR—In their recent article in Tobacco Control, Bialous and Yach create the impression that international standards for the machine smoking of cigarettes were foisted on the smoking public unilaterally by the tobacco industry by its influence on the International Organization for Standardization (ISO) through control of CORESTA (Centre de Co-operation pour les Recherches Scientifiques au Tabac). They also allege, inter alia, that the tobacco industry has, through CORESTA, changed the methodology in order to produce lower smoke yield values to get round the European “tar” ceiling directives, and (2) misleads the public by developing low “tar” cigarettes to cheat the smoking machine, and then makes unjustified health claims about them. (“Standards” are documented agreements containing technical specifications or concise criteria to be used consistently as rules guidelines.)

In their article, Bialous and Yach concentrated predominantly on a few highly selective quotes from internal tobacco company documents. They appear not to have consulted much of the very large volume of scientific literature published on the subject. When this information is taken into account it becomes obvious that the very narrow and restricted literature base of Bialous and Yach’s analysis has resulted in them making factual errors, drawing wrong conclusions and writing inaccurate statements on many aspects of the subject.

A review of the published literature on the subject shows clearly that the broad facts are as follows:

(1) Techniques relevant to the machine smoking of cigarettes were developed and refined throughout the 20th century. The first standard was specified by the Federal Trade Commission (FTC), a US federal government agency, in 1966 and first used to test cigarettes in 1967. The CORESTA recommended method, similar in many respects to that of the FTC, was developed after the FTC standard and was published in 1969.

(2) There were small differences in the details of the smoking machine procedures in the various standard methods developed by the FTC and subsequently CORESTA, ISO and authorities in the UK, Germany, Canada and elsewhere between 1969 and the late 1970s. These differences resulted in about a 10% difference in the “tar” yield of the same cigarette measured by authorities in Britain and Germany, for example. By the late 1980s it was recognised that this situation was unacceptable in view of pending European directives which specified “tar” ceilings for all cigarettes sold in member states across Europe from 1993. Consequently, the differences in methodology were harmonised in a common ISO standard method in 1991, developed following a considerable amount of inter laboratory comparisons of the developing methodology undertaken within CORESTA across 29 laboratories from 15 countries. This revised standard method is now used in all countries except the USA where the slightly different FTC method still continues to be used, and in Japan where some minor differences are used in their national standard. Changing to the ISO standard in the early 1990s, “tar” yields determined in the UK, for example, decreased by up to 0.5 mg while “tar” yields in Canada, for example, increased by up to 3 mg for some brands.

(3) The purpose of the smoking machine standards is to determine the “tar”, nicotine, and carbon monoxide content of cigarette smoke when the cigarette is smoked under precisely defined conditions, and hence to allow a comparison of the yields from different cigarettes. Such yields are not predictive of the yields humans obtain when smoking, nor were they ever expected to be so, since no two smokers smoke exactly the same nor do smokers smoke a cigarette the same way on every occasion. This purpose has been stated consistently many times, originally by the FTC in 1967, and subsequently in the scientific literature, published by the tobacco industry and health/regulatory authorities, over the last 35 years, e.g.

(4) Compensation by smokers when switching to a low “tar” cigarette has been discussed in the scientific literature for 40 years. The phenomenon was first published by the tobacco industry and tobacco industry scientists have published books and papers on the subject, e.g. 11, 12. The available evidence, albeit limited, indicates that compensation is partial in the short term (up to a few weeks), and that smokers switching from a higher to a lower “tar” yield cigarette do generally obtain a reduction in smoke delivery.

(5) Since the 1950s numerous health scientists have advocated that lower “tar” cigarettes should be煙 promoted on the grounds that they may represent a less hazardous form of smoking, e.g. 13, 14, 15. Health authorities have consistently advised smokers to quit, but for those who choose to continue to smoke that they should choose “low” cigarettes, e.g. 16, 17. The tobacco industry has responded to these health authorities by developing cigarettes with lower “tar” but has also followed public health advice by not advertising lower “tar” cigarettes as safe cigarettes.

RICHARD R BAKER
Research & Development Centre, British American Tobacco, Southpoint 0SS1 8TL, UK

References

5 CORESTA, Recommended Method No. 11: Machine smoking of cigarettes, determination of smoke tar and nicotine content. CORESTA Inf Bull No 1 1969:24–33.

Editor—In a recent article, Bialous and Yach attempt “to describe the extent of the tobacco industry involvement in establishing international standards for tobacco and tobacco products.” They assert that “it is clear that the tobacco industry, through [CORESTA], play a major role in determining the scientific evidence and suggesting the standards that are eventually developed as international standards.” Finally, they conclude that “ISO’s tobacco and tobacco products standards are not adequate to guide tobacco products regulatory policies, and no health claims can be made based on [these] standards.” Moreover, along the way, these authors seem to suggest some impropriety in CORESTA’s involvement in the standards setting process and offer some examples that, they believe, support a contention that is in fact untrue.

CORESTA (Cooperation Centre for Scientific Research Relative to Tobacco) is an organisation devoted entirely to issues related to tobacco science. Those issues range from plant breeding and good agricultural practices to technological aspects of manufacturing and analytical technology of smoke yields. That the majority of worldwide tobacco science expertise resides within the tobacco industry should come as surprise to no one (as would be true for most industries facing technical challenges). That many of these experts find themselves involved in CORESTA and International Organization for Standardization (ISO) TC-126 activities should, likewise, be of no surprise. Development of technical standards, whether within CORESTA or ISO or elsewhere, without relying on the best available technical expertise would, of course, be irrational.

Regarding the suggestion of impropriety, Bialous and Yach outline three areas that, they believe, support their case. First, they claim “[ISO] standards are approved and recommended by CORESTA, with limited opportunity for significant amendments.” Offered as an example is an excerpt of CORESTA minutes regarding ISO DIS 11454, stating that the DIS (Draft
International Standard) will be published as an international standard with no changes other than editorial. What Bialous and Yach apparently fail to appreciate is that the ISO approval process leading up to the DIS stage involved a development period of at least four years and multiple balloting stages (opportunities) for significant amendments. For example, balloting at the previous committee stage (ISO/TC 126 N 537, July 1995) generated nine pages of comments from 12 countries. The 1997 CORESTA minutes reflect only that at the DIS stage in the overall ISO process, no changes had been requested by ISO members other than those of an editorial nature.

Secondly, Bialous and Yach made a compound assertion, that “CORESTA works with ISO directly or that CORESTA works through one of ISO’s member bodies”. CORESTA does have a liaison member status with ISO, but does not work with any of ISO’s member bodies. Lastly, Bialous and Yach assert “CORESTA resists any interference with its members’ outcomes of ISO meetings”. Offered as support is a matter concerning updates to the ISO smoking methods. Again, an egregious misrepresentation has resulted. A CORESTA working group and the British Standards Institution (BSI) independently prepared editorial commentary on similar issues within the text of the ISO smoking methods. Wishing to defer to the ISO process, CORESTA postponed an update to the existing CORESTA methods, instead wishing to wait for ISO to finish their deliberations.

The Group of improvidence, Bialous and Yach assert examples that do not support their contention. Rather to the contrary, this serves as testament to the proper- ty of the CORESTA-ISO relationship extended to a continued relationship with all parties with an interest in the business of technical standardisation related to tobacco and tobacco products.

Author’s reply

Editor—Mr Jacob and Dr Baker’s criticisms apparently fail to appreciate is that the ISO approval process leading up to the DIS stage involved a development period of at least four years and multiple balloting stages (opportunities) for significant amendments. For example, balloting at the previous committee stage (ISO/TC 126 N 537, July 1995) generated nine pages of comments from 12 countries. The 1997 CORESTA minutes reflect only that at the DIS stage in the overall ISO process, no changes had been requested by ISO members other than those of an editorial nature.

Secondly, Bialous and Yach made a compound assertion, that “CORESTA works with ISO directly or that CORESTA works through one of ISO’s member bodies”. CORESTA does have a liaison member status with ISO, but does not work with any of ISO’s member bodies. Lastly, Bialous and Yach assert “CORESTA resists any interference with its members’ outcomes of ISO meetings”. Offered as support is a matter concerning updates to the ISO smoking methods. Again, an egregious misrepresentation has resulted. A CORESTA working group and the British Standards Institution (BSI) independently prepared editorial commentary on similar issues within the text of the ISO smoking methods. Wishing to defer to the ISO process, CORESTA postponed an update to the existing CORESTA methods, instead wishing to wait for ISO to finish their deliberations.

The Group of improvidence, Bialous and Yach assert examples that do not support their contention. Rather to the contrary, this serves as testament to the property of the CORESTA-ISO relationship extended to a continued relationship with all parties with an interest in the business of technical standardisation related to tobacco and tobacco products.

Without the need for product modification, a point also made by Dr Baker. Recent literature and health authorities’ recommendations regarding “lower” tar and nicotine cigarettes show that switching to lower yield is no longer perceived as an effective preventative strategy to address tobacco related morbidity and mortality. Several countries and the European Union have already banned or are moving to ban the utilisation of labels such as “mild” and “lights” based on scientific and tobacco industry evidence that these mislead the public into thinking these cigarettes are safer.

Indeed, a 1977 British American Tobacco (BAT) document states that work in this area should be directed towards providing consumer reassurance about cigarettes and the smoking habit. This can be provided in different ways, for example, by claiming low deliveries, by the perception of low deliveries, and by the perception of “mildness”. Furthermore, advertising for low delivery or traditional brands should be constructed in ways so as not to provoke anxiety about health, but to reassure the smoker to feel assured about the habit and confident in maintaining it over time.

We do not suggest “impropriety in CORESTA’s involvement” since, as per the ISO, its objective is to define the industry’s role in the process. However, we question the adequacy of having tobacco interests being the sole provider of scientific evidence in the area of tobacco products standardisation. We question CORESTA’s involvement as much as the lack of involvement from other interested parties (for example, health and consumer groups) as well as whether or not the ISO is fulfilling its aim of protecting the health and safety of consumers of tobacco products.

Mr Jacob’s assertion that the “majority of worldwide tobacco science expertise resides within the tobacco industry should come as surprise to no one” is correct. However, recent litigation has shown that this expertise has not been used to benefit the health and safety of the consumers of tobacco products.

It is also no surprise that many of the tobacco industry experts “find themselves involved in CORESTA and ISO TC-126 activities”, but it is unacceptable that these experts are the only ones participating in these activities.

As for the three specific areas of criticism in Mr Jacob’s letter:

(1) From the description of the ISO standards approval process, the majority of work is done at the Technical Committee (TC) level, and final approval of a DIS (Draft International Standard) is by the TC as well. In the case of TC 126, with a majority of members representing the tobacco industry, and CORESTA being the organisation conducting the work on the proposed standards, amendments are referred back to the TC and to CORESTA. In the example offered, ISO/DIS 11454, reference 34 in our paper describes some of these comments and how they represent the tobacco industry’s perspective.

(2) The assertion CORESTA works with ISO either directly or through one of ISO’s members bodies . . . emphasizes the great overlap among the people (and interests) who are members of CORESTA, TC 126 and those involved in the success at member bodies such as British Standards Institution (BSI) and American National Standards Institution (ANSI). Although no official relation between CORESTA and ISO’s member bodies exists, it is clear that efforts are often agreed upon. In the example provided, at a CORESTA Scientific Commission meeting a modified text for environmental tobacco (ETS) determination was sent to ISO via ANSI. (An unquoted example, from reference 45,) states that CORESTA had prepared a draft standard on ambient air to be installed at BS1.

(3) We saw no evidence that CORESTA accepts outsiders’ input in preparing standards forwarded to ISO, but it is clear that they want to maintain “CORESTA methods and ISO standards . . . close or identical.” The following quote from the same document addresses how CORESTA planned to deal outside participation (by participation in the validation stages, not in the development, of a measurement method).

We appreciate the opportunity to address these comments, and Mr Jacob’s offer for a continued dialogue in the area of standardisation of tobacco products.

STELLA AGUNAGA BIALOUS
DEK YACHI
Tobacco Free Initiative, World Health Organization, Geneva, Switzerland stella@tobalous.com

11 Short PL. Smoking and health item 7: the effect on marketing. 14 April 1977. BAT Co Minnesota Trial Exhibit 10,385.
Desire to stop smoking among intermittent and daily smokers: a population-based study

Editor—An important fraction of all smokers are intermittent, non-daily smokers, and the proportion of intermittent smokers may even be rising. Intermittent smokers are younger and have a higher educational and occupational status than daily smokers. Some intermittent smokers are either in the uptake phase of smoking, or are preparing for smoking cessation. However, intermittent smoking can also be a long term behaviour. Intermittent smokers are more likely than daily smokers to have a strong intention to quit smoking. They are also more likely to actively start the process of smoking cessation. Intermittent smokers probably also suffer less severe withdrawal symptoms during cessation attempts than do daily smokers and, therefore, have a greater potential for success. Intermittent smokers perceive quitting as not being very difficult. However, there are no studies concerning the prevalence of the desire to stop smoking among intermittent compared to daily smokers.

The public health survey in Malmö 1994 is a cross sectional study. A total of 5600 individuals born in 1913, 1923, 1933, 1943, 1953, 1963, 1968, and 1973 were randomly selected from the general Malmö population and interviewed by a postal questionnaire in the spring of 1994. In each age group, 700 participants (350 men and 350 women) were interviewed. The participation rate was 71%. The desire to stop smoking item, “Do you want to stop smoking?”, had two alternative answers, “yes” and “no”, and the item was dichotomised accordingly. The smoking item contained four alternatives: never smoked, stopped smoking, daily smoker, and intermittent (non-daily) smoker. The sex differences in daily smoking, intermittent smoking, never smoked, and stopped smoking were calculated using t tests (results only presented in text). The proportions of daily and intermittent smokers that report a desire to stop smoking were also calculated with t tests (results only presented in text). The proportions of daily and intermittent smokers that express desire to stop smoking were calculated separately using logistic regression in order to analyse associations between sociodemographic variables and desire to stop smoking (table 1). The SPSS software package was used.

A total of 56.4% of all male and 59.9% of all female smokers (both daily and intermittent) had expressed a desire to stop smoking (p < 0.001). The proportion of daily smokers was 24.5% among men and 23.7% among women (p < 0.001). Men were more likely to express a desire to stop smoking compared to women (p < 0.001). The desire to stop smoking among intermittent smokers (p = 0.001) was higher among men than women (p = 0.01). Only 34.9% of the men had never smoked, while 50.3% of the women had never smoked (p < 0.001). In contrast, 31.9% of the men had stopped smoking compared to only 8.8% of women (p < 0.001). A higher proportion (67.7%) of all daily smokers expressed a desire to stop smoking, compared to only 32.3% of all intermittent smokers (p < 0.001). Table 1 shows that the desire to stop smoking was highest among daily smokers born in 1963, odds ratio 1.9 (95% confidence interval CI) 1.04 to 3.6), compared to daily smokers born in 1973. The desire to stop smoking decreased significantly with age. No significant differences according to age in the desire to stop smoking were seen among the intermittent smokers. Daily smokers born in Sweden and abroad had expressed a desire to stop smoking to the same extent. In contrast, intermittent smokers born abroad had expressed a desire to stop smoking to a much higher extent than the group born in Sweden. No significant differences between the educational status groups and the desire to stop smoking were observed for either daily or intermittent smokers.

Non-participation is not likely to have produced serious selection bias. There was a good concordance between data and register census data concerning foreign origin and the general educational level of the Malmö population. There is also the possibility of bias from self reported data. Although self reporting of smoking is the only conceivable way to assess desire to stop smoking, it is subjective and may even reflect a person’s general perception of health. However, this fact would probably not bias the systematic differences between intermittent and daily smokers reported in this study. The proportion of all smokers that express a desire to stop smoking is very similar to the results of other studies.

The results may seem surprising, given the fact that other studies have reported that some intermittent smokers may be former regular smokers in the process of smoking cessation, and that these studies have also reported a stronger intention to quit and a greater likelihood of having recently attempted to quit among intermittent smokers. However, the proportion of the general population with an intentional desire to stop smoking seems to be much lower among intermittent than among daily smokers, and this finding strengthens the conclusion of other studies that a substantial fraction of all intermittent smokers are long term intermittent smokers and others are in the uptake phase of smoking. The conclusion that a higher proportion of daily smokers than intermittent smokers report a desire to stop smoking is also supported by a prevalence of intermittent smoking among both men and women. Pomerleau and Pomerleau have stressed that nicotine has a variety of effects that may be directly reinforcing, even in the absence of dependence. Specific benefits of smoking

Table 1 Crude odds ratios (OR) and 95% confidence intervals of desire to stop smoking among daily smokers and intermittent smokers according to sociodemographic and snuff consumption characteristics. The public health survey in Malmö 1994.

<table>
<thead>
<tr>
<th>Category</th>
<th>Daily smoker</th>
<th>Intermittent smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of birth</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1973</td>
<td>85</td>
<td>62.4</td>
</tr>
<tr>
<td>1968</td>
<td>107</td>
<td>65.4</td>
</tr>
<tr>
<td>1963</td>
<td>113</td>
<td>76.1</td>
</tr>
<tr>
<td>1953</td>
<td>152</td>
<td>73.7</td>
</tr>
<tr>
<td>1943</td>
<td>150</td>
<td>62.7</td>
</tr>
<tr>
<td>1933</td>
<td>110</td>
<td>64.5</td>
</tr>
<tr>
<td>1923</td>
<td>101</td>
<td>50.5</td>
</tr>
<tr>
<td>1913</td>
<td>49</td>
<td>28.6</td>
</tr>
<tr>
<td>Missing</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Country of origin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>590</td>
<td>62.5</td>
</tr>
<tr>
<td>Other</td>
<td>277</td>
<td>65.7</td>
</tr>
<tr>
<td>Missing</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 12 years</td>
<td>201</td>
<td>65.2</td>
</tr>
<tr>
<td>10–12 years</td>
<td>168</td>
<td>70.2</td>
</tr>
<tr>
<td>< 9 years</td>
<td>428</td>
<td>61.0</td>
</tr>
<tr>
<td>Others</td>
<td>364</td>
<td>56.2</td>
</tr>
<tr>
<td>Missing</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Snuff user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>701</td>
<td>63.1</td>
</tr>
<tr>
<td>Yes</td>
<td>35</td>
<td>74.3</td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>880</td>
<td></td>
</tr>
</tbody>
</table>

www.tobaccocontrol.com
have been documented in cognitive and psychomotor performance. The smoking of intermittent smokers may be motivated by these effects.

The results further support the notion that intermittent smokers are a specific group of smokers with smoking cessation characteristics that differ from the characteristics of daily smokers.

MARTIN LINDSTROM
Department of Community Health,
University Hospital MÅS, Lund University,
S 205 02 Malmö, Sweden
martin.lindstrom@smi.mas.lu.se

Smoking among Japanese nursing students: a nationwide survey

EDITOR—In some developed countries including Japan, smoking prevalence among nursing students tends to be the same or higher than that of the general female population of the same age group.1 In Japan, an increase in the prevalence of smoking among women in their 20s was recently reported,2 and this trend is assumed to be reflected in the smoking prevalence of nursing students, where young women are over represented.

To obtain data on smoking prevalence of nursing students, a nationwide survey was conducted among the students of nursing (three year programme), public health nursing (PHN), and midwifery schools. Students of PHN and midwifery are qualified as nurses, and involved in one year training to acquire qualification as PHN and midwives, respectively. The survey was conducted in October 2000 using self-reported questionnaires.

In 2000, there were 465 three year nursing schools (total number of students: 66 430), 66 PHN schools (1697 students), and 73 midwifery schools (1420 students) in Japan. Among these, 27 nursing schools, 17 PHN schools, and 16 midwifery schools were selected at random, and the survey was carried out on all students in the selected schools. Between selected schools and non-selected schools, little difference was observed with respect to their geographical distribution and student volume size.

Each subject from the selected schools filled in the questionnaire, put it into an envelope, sealed and handed it to the person in charge. The questionnaire included the items of a previous survey on smoking behaviour among nurses, and eight items related to the nicotine dependency scale of Fagerstrom.3 The return rates were 95% (3866/4169) for the nursing schools, 91% (534/592) for the PHN schools, and 95% (325/343) for the midwifery schools. After excluding incompletely answered questionnaires, 3762, 530, and 303 responses were analysed, respectively.

The prevalence of smoking among women in the nursing schools was 25% in the nursing schools, 13% in the PHN schools, and 22% in the midwifery schools. In the nursing schools, the prevalence of smoking increased as the grade advanced. In the third year, the prevalence of smoking was 31%, higher than that among the general population in their 20s (23%).4 As to male students in third year, the prevalence of smoking was nearly the same as that of the general female population in their 20s (60%).5 Furthermore, the nicotine dependency among female daily smokers in the nursing schools was higher than that in the PHN schools or midwifery schools. Therefore, anti-smoking education in nursing schools is urgently needed. In this survey, smoking prevalence was lower among students in the PHN and midwifery schools. The difference occurs because those who had already qualified as nurses and wished to continue studying to acquire another qualification were less likely to smoke than those who were not in the same career level. It is therefore suggested that the prevalence of smoking among less educationally motivated students is lower. Adriaanse and colleagues6 reported that nurses who were motivated in their jobs had a tendency not to smoke, which is consistent with the results although our subjects were nursing students.

TAKASHI OHIDA
AIKO SAKURAI
AMM KAMAL
TOMOFUMI SONE
SHIGEYUKI TAKEMURA
FUJIKO FUKUSHIMA
Department of Public Health Administration, National Institute of Public Health
Department of Public Health Nursing*, Tokyo, Japan
tohida@iph.go.jp

This survey was supported in part by a Health Science Grant from the Ministry of Health and Welfare, Japan (currently called Ministry of Health, Labor, and Welfare, Japan).

This work was supported by National Cancer Institute Grant CA-61021.

BOOK

Book reviews and books of interest to “Tobacco Control” should be sent to the editor at the address given on the inside front cover.

Smoke in their eyes

There have been memorable dates, both glorious and infamous, that have defined aims and charted progress and setbacks for the US tobacco control movement. The most notable of these events have had global repercussions.

On 15 December 1953, the heads of four major US tobacco firms met in New York City’s Park Plaza Hotel, where they launched the Tobacco Industry Research Council and hammered out the seminal text of a nationwide newspaper ad, “A frank statement to cigarette smokers”. On 11 January 1964, US Surgeon General Luther Terry released the Report of the Advisory Committee on Smoking and Health, concluding “it is the judgment of the Committee that cigarette smoking contributes substantially to mortality from certain specific diseases and to the overall death rate”. At the Waxman Hearings on 14 April 1994, the “seven dwarves”, chief executive officers (CEOs) of the top seven US tobacco companies, were photographed for posterity as they prepared to declare that nicotine is not addictive.

At least one more date marks the US tobacco control calendar, but it evokes no signal image, conjures no immortal quote. And yet, on 3 April 1997, at the Sheraton Hotel in Crystal City, Virginia, an extraordinary meeting did take place. That Thursday afternoon, Geoffrey Bible and Steve Goldstone, CEOs of Philip Morris and RJ Reynolds, respectively, met in secret with trial lawyers and state attorneys general, hoping to hammer out a settlement of litigation pending against the tobacco industry. Along with the CEOs, the lawyers, the attorneys general, and their minions, there was one more participant at that meeting: Matthew Myers, vice president and general counsel of the National Center for Tobacco-Free Kids.

In Smoke in their eyes: lessons in movement leadership from the tobacco wars, Michael Pertschuk describes the political path that led Myers to that Virginia hotel and chronicles what happened in the meeting’s wake. Pertschuk, former head of the US Federal Trade Commission, founder and co-director of the Advocacy Institute, and longtime combatant against the tobacco industry, pitches battles between the rival ENACT and Framework Convention on Tobacco Control. What is certain is that the tobacco industry knew what it wanted back in 1997 and still knows what it wants today.

Professor Isaiah Berlin famously borrowed the dictum of the Greek poet Archilochus, who wrote: “The fox knows many things, but the hedgehog knows one big thing.” The tobacco industry is a huge, knowing hedgehog. Michael Pertschuk’s insight and intellect help explain how the tobacco control movement has outfoxed itself lately, but his Manichean dichotomy of Myers-good, Glantz-bad does the movement a disservice. The hedgehog rolls along. The fox needs a new game plan.

STAN SHATENSTEIN

Editor, GLOBALink Tobacco News

5492-B Trans Island

Montreal, Quebec, Canada H3W 3A8

shatenstein@sympatico.ca

www.tobaccocontrol.com