Consumption and production waste: another externality of tobacco use

Thomas E Novotny, Feng Zhao

Abstract
Objective—To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing.

Study selection—All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed.

Data sources—Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation’s International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency’s (EPA’s) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing.

Data extraction and synthesis—In 1995, an estimated 5.535 trillion cigarettes (27 675 million cartons and 276 753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990–1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilogramsm of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms.

Conclusions—Laws against littering relative to cigarette butts could be better enforced. Additional taxes might be levied on cigarette products that would then be directed to environmental clean-up efforts. The tobacco industry should improve the biodegradability of filters, reduce packaging waste, and educate its customers. Worksites and public buildings should be encouraged or required to supply appropriate disposal mechanisms at all building entrances. Public awareness campaigns about the magnitude and prevention of cigarette consumption waste could be developed through partnerships among environmental groups, health organisations, and environmental protection agencies. Tobacco production waste should be a source of concern and regulation by governments throughout the world; it contains numerous chemicals which may be considered health hazards, not the least of which is nicotine produced in the manufacture of low-nicotine cigarettes.

Keywords: tobacco waste, litter, environmental impact
the paper and tobacco components are biodegradable, the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.

Historically, the ocean has been a common dumping ground for human-made debris. The paper and the cigarette debris are biodegradable, but the filters and plastic wrappers are retained in the environment for long periods of time. Cigarette filters most commonly contain cellulose acetate, and some research has been undertaken by the tobacco industry to improve biodegradation of this material. Cellulose acetate filters may persist under normal environmental conditions for 18 months or more. Moreover, the butts themselves may be an acute health hazard to animals and to small children, who may eat them.
Tobacco consumption and production waste

PRODUCTION WASTE

The tobacco manufacturing process produces liquid, solid, and airborne wastes. Liquid wastes include tobacco slurries, solvents, oils, and greases that originate in the manufacturing processes, building services, and facilities that may need special treatment or disposal. Solid wastes include paper, wood, plastics, unusable tobacco, packaging materials, and dirt that originate in the manufacturing process. These waste products are resold, recirculated, compacted, or put in landfills. Airborne wastes include non-toxic odours of manufacturing, in-plant dust, tobacco volatiles and particles, and other emissions. Abatement programmes for airborne waste include use of filters, dust collectors and scrubbers, low-sulphur fuels, and other controls.

Of greatest environmental concern among the manufacturing wastes are those chemicals (n = 643) specified as reportable to the TRI, developed by the United States Environmental Protection Agency (EPA) under the Emergency Planning and Community Right-to-Know Act of 1986. A waste is considered hazardous if it exhibits one or more of the following characteristics: ignitability (flammability), corrosivity (against metal), reactivity (capability of causing explosions, toxic fumes, gases, or vapours), or toxicity (harmful or fatal when ingested or absorbed). In the United States in 1992, the TRI reported in the Statistical record of the environment that tobacco manufacturing generated more than 27 million kilograms of production-related chemical waste, of which 2.2 million kilograms were TRI-treated or released into the environment. Overall, the tobacco industry ranked 18th among all industries in total chemical waste production.

A 1970 study on solid waste management in the United States tobacco manufacturing industry estimated that in 1963, 2700 kg of general solid waste were generated per manufacturing employee (total 225 million kilograms). We applied the estimated total chemical waste production for 1992 and the estimated solid waste production for 1963 to the number of cigarettes manufactured in those years to develop ratios of each waste to cigarettes produced. Adjusting these data for those years to develop ratios of each waste to cigarettes produced. Adjusting these data for costs for 1995 (the last year for which cigarette manufacturing data are available), we estimate that in the United States, 293 million kilograms of solid waste and 27 million kilograms of total chemical waste were produced (table 2). Globally, these totals are 2262 million kilograms for total solid wastes and 209 million kilograms for chemicals.

We also drew on an estimate of US$48 million for the total 1992 abatement costs for TRI chemicals reported by the American tobacco manufacturing industry. Inflating these costs by the American consumer price index increase for 1992–1995 and cigarette production increases, $52 million were spent in abatement for 1995; the global abatement cost estimate is $402 million in that year (table 2).

Figure 1 The 10 most common items of trash (52.4% of total trash) collected on Australia Clean Up Day 1993. Source: Keep Australia Beautiful National Association.

Figure 2 Percentage of cigarette butts among debris collected by International Beach Cleanup, 1990–1997. Source: Centre for Marine Conservation.
These estimates assume that all cigarette production processes around the world are similar and were unchanged with respect to waste production between 1963 and 1995 and that prices to control these wastes would increase at the same rate as the consumer price index. It may be that the price to control such waste has diminished with improved technology, but it may also be true that more stringent environmental controls, at least in industrial countries, may create higher costs of managing solid, liquid, and airborne wastes due to manufacturing.

The actual TRI chemicals reported by American manufacturers for 1996 (the last year for which data are reported) are shown in Table 3. These include sources from cigarettes, cigars, smokeless tobacco, and other manufacturing sites. These wastes were treated onsite, treated offsite, or released into the environment. The total (3 114 221 kg) is almost a million kilograms higher than the TRI total reported in 1992 (Table 2), but a significant portion of this difference may be accounted for by the inclusion of nicotine in the TRI. A discussion of the potential environmental impact of all these chemical releases is beyond the scope of this paper.

Nicotine is an interesting tobacco production waste product. The tobacco manufacturing process and all activities that use tobacco produce solid or liquid wastes with high concentrations of nicotine. Partly in response to information about the addictive nature of nicotine, the market for low-nicotine cigarettes has been growing. Thus, an ironic outcome of this market growth is the increased need to detoxify nicotine in tobacco production waste. A non-recyclable, powdery, nicotine-containing waste is formed during tobacco production, which has average nicotine content of 18 g per kg of dry weight. This waste is classified as “toxic and hazardous” by European Union Regulations when the nicotine content exceeds 500 mg per kg dry weight. According to a 1997 study from Italy, an average 3 million kilograms of this waste are reported in 1995 by the tobacco industry to be produced from 55 300 million cigarettes manufactured in that country. If manufacturing processes and waste outputs per million cigarettes produced in the United States and globally are similar to those reported in Italy, it is estimated that 38 870 000 kg of nicotine waste was produced in the United States in 1995, and 300 274 000 kg was produced globally in the same year. Denicotinisation of waste requires chemical–physical treatments or biological methods with microorganisms to reduce the nicotine content of released wastes below the threshold of 500 mg per kg. In the United States, nicotine has been included on the TRI list since November 1994. Nicotine itself is an anti-parasitic plant pesticide.

Conclusions and recommendations

The health consequences of cigarette smoking to smokers and exposed non-smokers are well known. Cigarette products and production may also affect environments in other ways that require attention from environmental groups, industry, and government. Cellulose acetate filters from cigarette butts do not rapidly biodegrade; thus, they are a relatively long-lasting environmental problem, especially in waterways and run-offs from urban environments. At least 4.5 trillion filter-tipped cigarettes are deposited annually somewhere in the world. Many will find their way into appropriate disposal facilities, but the CMC clean-up data suggest that a large number end up on beaches and in other aquatic environments.

Smokers may not consider that a cigarette butt is litter, but these waste products seem to be ubiquitous. Perhaps because of the proliferation of restrictions on smoking in worksites and public places, it is common for building entrances to have a collection of cigarette butts nearby. These collections come in large part from smokers discarding cigarettes before they enter the building and from workers smoking on breaks. Some worksites have made special attempts to provide appropriate disposal facilities (Figure 3).

Nevertheless, cigarette butts are frequently a source of urban blight and environmental pollution. In addition to the environmental contamination by cigarette butts, consumption waste left in ashtrays in the homes of smokers may be a source of poisoning for young children. In 1994–1996, the Rhode Island Department of Health identified 40 cases of cigarette butt ingestion among children aged 6 to 24 months as reported by the poison-control system in that state.’ Thirteen of the cases of ingestion produced symptoms such as vomiting, gagging, and lethargy.
Tobacco consumption and production waste

Tobacco consumption and production waste may address the problem of significant solid, liquid, airborne, and chemically toxic waste produced in cigarette manufacturing. Thus, it may be prudent for multinational health, trade, and economic agencies to raise environmental considerations related to tobacco production as a global health issue.

Additional research is needed to quantify the environmental impact of both tobacco consumption and production waste. Tobacco is a hazardous product when used as directed, but there is also a hazard due to production and consumption waste deposited into the environment. Perhaps the tobacco industry should be held partly accountable for the environmental clean-up costs related to cigarette butts and totally responsible for abatement of hazardous wastes resulting from the manufacturing process. It has been increasingly held accountable for the medical care costs associated with treating tobacco-attributable illnesses. This accountability should extend beyond the provision of cigarette butt disposal devices to smokers, which is primarily a public relations gimmick. It should also extend beyond the borders of developed countries, where regulatory controls on manufacturing waste may actually be enforced, to developing countries, which are increasingly at risk for environmental contamination as cigarette production capacity in those countries expands.

The authors would like to thank members of Globalink, who provided valuable information used in this report, as well as Laurie Williams of the Center for Marine Conservation for providing data from the Coastal Cleanup Project and Emmanuel Guindon of the World Health Organisation for providing data on cigarette consumption. The opinions expressed are solely those of the authors and do not represent official positions of the United States Centers for Disease Control and Prevention or the Johns Hopkins University.

5 Collazo H, Haynes SK, McDonough MM. The mechanisms of degradation of cellulose acetate in the environment. Abstract No 5021, Tobacco Chemists’ Research Conference, 1996.
Waste not, want not

Reconstituted tobacco, known as “sheet” in the cigarette industry, is a major ingredient in modern cigarettes. It is manufactured from the recycled stems, stalks, scrap, collected dust, and floor sweepings from tobacco manufacturing plants. Various patents have been awarded to tobacco manufacturers for processing waste such as this into sheet. The ground-up materials are denicotinised, and chemicals, fillers, glue, and other agents are added to the slurry. The sheet is then pressed out and puffed, renicotinised, and ground into tiny curls before being incorporated into cigarettes. The waste constituents used in this process are imported and exported, depending on economic conditions. In 1995, 1,355,755 kg of tobacco stems and refuse were imported and 1,989,786 kg were exported by the United States.

Source: US import and exports history database, US Department of Commerce.