Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs

Abstract

THE question of whether nicotine, the neuroactive compound of tobacco, is addictive has been open to considerable scientific and public discussion. Although it can serve as a positive reinforcer in several animal species, including man, nicotine is thought to be a weak reinforcer in comparison with addictive drugs such as cocaine and heroin1,2, and has been argued to be habit forming but not addictive3,4. Here we report that intravenous nicotine in the rat, at doses known to maintain self-administration, stimulates local energy metabolism, as measured by 2-deoxyglucose autoradiography, and dopamine transmission, as estimated by brain microdialysis, in the shell of the nucleus accumbens. These neurochemical and metabolic effects are qualitatively similar to those of other drugs, such as cocaine, amphetamine and morphine, which have strong addictive properties5–7. Our results provide functional and neurochemical evidence that there are specific neurobiological commonalities between nicotine and addictive drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stolerman, I. P. in Handbook of Psychopharmacology (eds Iversen, L. L, Iversen, L. D. & Snyder, S. H.) 421–465 (Plenum, New York, 1987).

    Book  Google Scholar 

  2. Swedberg, M. D. B., Henningfield, J. E. & Goldberg, S. R. in Nicotine Psychopharmacology: Molecular, Cellular and Behavioral Aspects (eds Wonnacott, S., Russell, M. A. H. & Stolerman, I. P.) 38–76 (Oxford Science, Oxford, 1990).

    Google Scholar 

  3. Robinson, J. H. & Pritchards, W. S. Psychopharmacology 108, 397–407 (1992).

    Article  CAS  Google Scholar 

  4. Warburton, D. M., Revell, A. & Walters, A. C. in The Pharmacology of Nicotine (eds Rand, M. & Thurau, K.) 359–373 (IRL, Oxford, 1989).

    Google Scholar 

  5. Pontieri, F. E. et al. NeuroReport 5, 2561–2564 (1994).

    Article  CAS  Google Scholar 

  6. Orzi, F. et al. Eur. J. Pharmac. (in the press).

  7. Pontieri, F. E., Tanda, G. & Di Chiara, G. Proc. natn. Acad. Sci. U.S.A. 92, 12304–12308 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Wise, R. A. & Bozarth, M. A. Psychol. Rev. 94, 469–492 (1987).

    Article  CAS  Google Scholar 

  9. Koob, G. F. Trends pharmac. Sci. 13, 177–184 (1992).

    Article  CAS  Google Scholar 

  10. Di Chiara, G. Drug Alcohol Depend. 38, 95–121 (1995).

    Article  CAS  Google Scholar 

  11. Di Chiara, G. & Imperato, A. Proc. natn. Acad. Sci. U.S.A. 88, 5274–5278 (1988).

    Article  ADS  Google Scholar 

  12. Alheid, G. F. & Heimer, L. Neuroscience 27, 1–39 (1988).

    Article  CAS  Google Scholar 

  13. Heimer, L. et al. Neuroscience 41, 89–125 (1991).

    Article  CAS  Google Scholar 

  14. Corrigall, W. A. & Coen, K. M. Psychopharmacology 99, 473–478 (1989).

    Article  CAS  Google Scholar 

  15. Corrigall, W. A. in Effects of Nicotine on Biological Systems (eds Adklofer, F. & Thurau, K.) 423–432 (Birkhauser, Boston, 1991).

    Book  Google Scholar 

  16. Sokoloff, L. et al. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  Google Scholar 

  17. Ungerstedt, U. in Measurement of Neurotransmitter Release in Vivo (ed. Marsden, C. A.) 81–105 (Wiley, Chichester, 1984).

    Google Scholar 

  18. Di Chiara, G. Trends pharmac. Sci. 11, 116–121 (1990).

    Article  CAS  Google Scholar 

  19. London, E. D. et al. J. Neurosci. 8, 3920–3928 (1988).

    Article  CAS  Google Scholar 

  20. McNamara, D. et al. J. cerebr. Blood Flow Metab. 10, 48–56 (1990).

    Article  CAS  Google Scholar 

  21. Grunwald, F., Schrock, H. & Kuschinsky, W. Brain Res. 400, 232–238 (1987).

    Article  CAS  Google Scholar 

  22. Porrino, L. J. Psychopharmacology 112, 343–351 (1993).

    Article  CAS  Google Scholar 

  23. Imperato, A., Mulas, A. & Di Chiara, G. Eur. J. Pharmac. 132, 337–338 (1986).

    Article  CAS  Google Scholar 

  24. Damsma, G., Day, J. & Fibiger, N. C. Eur. J. Pharmac. 168, 368–371 (1989).

    Article  Google Scholar 

  25. Henningfield, J. E. & Heishman, S. J. Psychopharmacology 117, 11–13 (1995).

    Article  CAS  Google Scholar 

  26. Tiffany, S. T. Psychol. Rev. 97, 147–168 (1990).

    Article  CAS  Google Scholar 

  27. Crane, A. M. & Porrino, L J. Brain Res. 499, 87–92 (1989).

    Article  CAS  Google Scholar 

  28. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, Sydney, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontieri, F., Tanda, G., Orzi, F. et al. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382, 255–257 (1996). https://doi.org/10.1038/382255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing