Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ITAM-mediated tonic signalling through pre-BCR and BCR complexes

Key Points

  • Conventionally, antigen receptors are considered to be inactive until engaged by antigen. However, results from many disparate studies indicate that Igα–Igβ-containing complexes such as the pre-B-cell receptor (pre-BCR) and the B-cell receptor (BCR) can signal independently of ligand engagement, a process that has been termed tonic signalling.

  • Data indicates that the ability to signal independently of ligand engagement is a surprising characteristic of immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins in B cells and their precursors. Plasma-membrane localization is both necessary and sufficient to generate tonic signals from ITAM-containing proteins such as Igα and Igβ.

  • Several mechanisms are proposed to account for the initiation and regulation of tonic signalling. However, it is argued here that most evidence supports a mechanism that involves a sensitive balance between constitutively active protein tyrosine kinases and protein tyrosine phosphatases, which are recruited to tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory motifs (ITIMs), resulting in transient phosphorylation of Igα and Igβ ITAMs.

  • Tonic signalling might be a unique attribute of ITAM-containing plasma-membrane proteins and might be restricted to haematopoietic cells. All identified transmembrane ITAM-containing proteins are exclusively expressed by haematopoietic cells, coincident with similar restricted expression of ITIM-containing proteins.

  • Certain viruses encode transmembrane proteins that contain ITAMs. In all cases, these are oncogenic viruses with potent transforming potential in non-haematopoietic cells.

  • Virus-encoded ITAM-containing proteins might be previously unidentified oncoproteins for solid-tissue malignancies.

Abstract

Studies carried out over the past few years provide strong support for the idea that Igα–Igβ-containing complexes such as the pre-B-cell receptor and the B-cell receptor can signal independently of ligand engagement, and this has been termed tonic signalling. In this Review, I discuss recent literature that is relevant to the potential mechanisms by which tonic signals are initiated and regulated, and discuss views on how tonic and ligand-dependent (aggregation-mediated) signalling differ. These mechanisms are relevant to the possibility that tonic signals generated through immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins that are expressed by oncogenic viruses induce transformation in non-haematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and functional characterization of the pre-BCR and BCR.
Figure 2: Aggregation-induced BCR-proximal signalling.
Figure 3: Equilibrium model for maintaining the resting state of non-aggregated Igα–Igβ complexes.
Figure 4: Proposed model to integrate tonic and ligand-induced aggregation-dependent signalling processes.

Similar content being viewed by others

References

  1. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Shaffer, A. L. & Schlissel, M. S. A truncated heavy chain protein relieves the requirement for surrogate light chains in early B cell development. J. Immunol. 159, 1265–1275 (1997). References 3 and 4 are landmark papers that provided the first convincing indication of the ability of BCR complexes to signal independently of ligand. Reference 4 is also notable because it was the first to implicate ROS in the regulation of the basal signalling activity of the non-ligated receptor.

    CAS  PubMed  Google Scholar 

  4. Wienands, J., Larbolette, O. & Reth, M. Evidence for a preformed transducer complex organized by the B cell antigen receptor. Proc. Natl Acad. Sci. USA 93, 7865–7870 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papavasiliou, F., Jankovic, M., Suh, H. & Nussenzweig, M. C. The cytoplasmic domains of immunoglobulin (Ig) α and Ig β can independently induce the precursor B cell transition and allelic exclusion. J. Exp. Med. 182, 1389–1394 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Teh, Y. M. & Neuberger, M. S. The immunoglobulin (Ig) α and Igβ cytoplasmic domains are independently sufficient to signal B cell maturation and activation in transgenic mice. J. Exp. Med. 185, 1753–1758 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell, M. A. & Sefton, B. M. Association between B-lymphocyte membrane immunoglobulin and multiple members of the Src family of protein tyrosine kinases. Mol. Cell. Biol. 12, 2315–2321 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamanashi, Y., Kakiuchi, T., Mizuguchi, J., Yamamoto, T. & Toyoshima, K. Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science 251, 192–194 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, M. R. et al. The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. Science 258, 123–126 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Clark, M. R., Johnson, S. A. & Cambier, J. C. Analysis of Ig-α-tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated Ig-α stimulation of Fyn activity. EMBO J. 13, 1911–1919 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niiro, H. & Clark, E. A. Regulation of B-cell fate by antigen-receptor signals. Nature Rev. Immunol. 2, 945–956 (2002).

    Article  CAS  Google Scholar 

  12. Schmitz, R., Baumann, G. & Gram, H. Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J. Mol. Biol. 260, 664–677 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Futterer, K., Wong, J., Grucza, R. A., Chan, A. C. & Waksman, G. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J. Mol. Biol. 281, 523–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Shiue, L. et al. Interaction of p72syk with the γ and β subunits of the high-affinity receptor for immunoglobulin E, FcεRI. Mol. Cell. Biol. 15, 272–281 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grucza, R. A., Futterer, K., Chan, A. C. & Waksman, G. Thermodynamic study of the binding of the tandem-SH2 domain of the Syk kinase to a dually phosphorylated ITAM peptide: evidence for two conformers. Biochemistry 38, 5024–5033 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Rowley, R. B., Burkhardt, A. L., Chao, H. G., Matsueda, G. R. & Bolen, J. B. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig α/Ig β immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270, 11590–11594 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nature Immunol. 4, 274–279 (2003). This study directly establishes the role of SRC-family PTKs in the function of the pre-BCR.

    Article  CAS  Google Scholar 

  18. Tedder, T. F., Inaoki, M. & Sato, S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, M. L. & Brown, E. J. Positive and negative regulation of Src-family membrane kinases by CD45. Immunol. Today 20, 406–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Poe, J. C., Hasegawa, M. & Tedder, T. F. CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction. Int. Rev. Immunol. 20, 739–762 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Nitschke, L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr. Opin. Immunol. 17, 290–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gergely, J., Pecht, I. & Sarmay, G. Immunoreceptor tyrosine-based inhibition motif-bearing receptors regulate the immunoreceptor tyrosine-based activation motif-induced activation of immune competent cells. Immunol. Lett. 68, 3–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cherukuri, A., Dykstra, M. & Pierce, S. K. Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity 14, 657–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, X. & Wang, D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin. Immunol. 16, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J. H., Cramer, L., Mueller, H., Wilson, B. & Vilen, B. J. Independent trafficking of Ig-α/Ig-β and μ-heavy chain is facilitated by dissociation of the B cell antigen receptor complex. J. Immunol. 175, 147–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kremyanskaya, M. & Monroe, J. G. Ig-independent Ig β expression on the surface of B lymphocytes after B cell receptor aggregation. J. Immunol. 174, 1501–1506 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lang, P. et al. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-α/β dimers. Science 291, 1537–1540 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Rolink, A., Haasner, D., Melchers, F. & Andersson, J. The surrogate light chain in mouse B-cell development. Int. Rev. Immunol. 13, 341–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Benschop, R. J. & Cambier, J. C. B cell development: signal transduction by antigen receptors and their surrogates. Curr. Opin. Immunol. 11, 143–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Meffre, E., Casellas, R. & Nussenzweig, M. C. Antibody regulation of B cell development. Nature Immunol. 1, 379–385 (2000).

    Article  CAS  Google Scholar 

  33. Cambier, J. C., Pleiman, C. M. & Clark, M. R. Signal transduction by the B cell antigen receptor and its coreceptors. Annu. Rev. Immunol. 12, 457–486 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Otero, D. C. & Rickert, R. C. CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J. Immunol. 171, 5921–5930 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Fuentes-Panana, E. M., Bannish, G., Shah, N. & Monroe, J. G. Basal Igα/Igβ signals trigger the coordinated initiation of pre-B cell antigen receptor-dependent processes. J. Immunol. 173, 1000–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gauthier, L., Rossi, B., Roux, F., Termine, E. & Schiff, C. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl Acad. Sci. USA 99, 13014–13019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradl, H. & Jack, H. M. Surrogate light chain-mediated interaction of a soluble pre-B cell receptor with adherent cell lines. J. Immunol. 167, 6403–6411 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nature Immunol. 4, 849–856 (2003).

    Article  CAS  Google Scholar 

  39. Papavasiliou, F., Jankovic, M. & Nussenzweig, M. C. Surrogate or conventional light chains are required for membrane immunoglobulin μ to activate the precursor B cell transition. J. Exp. Med. 184, 2025–2030 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Muljo, S. A. & Schlissel, M. S. The variable, CH1, CH2 and CH3 domains of Ig heavy chain are dispensable for pre-BCR function in transgenic mice. Int. Immunol. 14, 577–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Corcos, D. et al. Pre-B-cell development in the absence of λ5 in transgenic mice expressing a heavy-chain disease protein. Curr. Biol. 5, 1140–1148 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Sayegh, C. E., Demaries, S. L., Iacampo, S. & Ratcliffe, M. J. Development of B cells expressing surface immunoglobulin molecules that lack V(D)J-encoded determinants in the avian embryo bursa of fabricius. Proc. Natl Acad. Sci. USA 96, 10806–10811 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bannish, G., Fuentes-Panana, E. M., Cambier, J. C., Pear, W. S. & Monroe, J. G. Ligand-independent signaling functions for the B lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J. Exp. Med. 194, 1583–1596 (2001). This paper describes a model to isolate tonic signalling functions of Igα–Igβ complexes on developing B cells and evaluate their ability to trigger pre-BCR- and BCR-dependent events in vivo . This is the first paper to directly evaluate a functional role for tonic signalling through pre-BCR and BCR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuentes-Panana, E. M., Bannish, G., van der Voort, D., King, L. B. & Monroe, J. G. Igα/Igβ complexes generate signals for B cell development independent of selective plasma membrane compartmentalization. J. Immunol. 174, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004). This paper describes a model to isolate tonic signalling functions of Igα–Igβ complexes on developing B cells and to evaluate their ability to trigger pre-BCR- and BCR-dependent events in vivo . This is the first paper to directly evaluate a functional role for tonic signalling through pre-BCR and BCR.

    Article  CAS  PubMed  Google Scholar 

  46. Meffre, E. & Nussenzweig, M. C. Deletion of immunoglobulin β in developing B cells leads to cell death. Proc. Natl Acad. Sci. USA 99, 11334–11339 (2002). These studies report the ability to rescue cell survival but not developmental progression with enforced expression of BCL-2, indicating that tonic signals promote not only survival programs but also trigger distinct processes necessary for development of peripheral B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Ikeda, A., Merchant, M., Lev, L., Longnecker, R. & Ikeda, M. Latent membrane protein 2A, a viral B cell receptor homologue, induces CD5+ B-1 cell development. J. Immunol. 172, 5329–5337 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Casola, S. et al. B cell receptor signal strength determines B cell fate. Nature Immunol. 5, 317–327 (2004).

    Article  CAS  Google Scholar 

  50. Smith, S. H. & Cancro, M. P. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J. Immunol. 170, 5820–5823 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keren, Z., Diamant, E., Ostrovsky, O., Bengal, E. & Melamed, D. Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J. Biol. Chem. 279, 13418–13424 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Tze, L. E. et al. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol. 3, e82 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fujimoto, M., Bradney, A. P., Poe, J. C., Steeber, D. A. & Tedder, T. F. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 11, 191–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Diamant, E., Keren, Z. & Melamed, D. CD19 regulates positive selection and maturation in B lymphopoiesis: lack of CD19 imposes developmental arrest of immature B cells and consequential stimulation of receptor editing. Blood 105, 3247–3254 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Fuentes-Panana, E. M., Bannish, G. & Monroe, J. G. Basal B-cell receptor signaling in B lymphocytes: mechanisms of regulation and role in positive selection, differentiation, and peripheral survival. Immunol. Rev. 197, 26–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Schamel, W. W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Tolar, P., Sohn, H. W. & Pierce, S. K. The initiation of antigen-induced BCR signaling viewed in living cells by fluorescence resonance energy transfer. Nature Immunol. 6, 1168–1176 (2005). This study directly evaluates the organization of BCR complexes on living B cells. They establish that the BCR exists in a monomeric rather than a constitutively oligomeric state in the absence of ligand.

    Article  CAS  Google Scholar 

  59. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Veillette, A., Latour, S. & Davidson, D. Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20, 669–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Tamir, I., Dal Porto, J. M. & Cambier, J. C. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr. Opin. Immunol. 12, 307–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Y., Harder, K. W., Huntington, N. D., Hibbs, M. L. & Tarlinton, D. M. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 22, 9–18 (2005).

    PubMed  Google Scholar 

  64. Cornall, R. J. et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8, 497–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Keshvara, L. M. et al. Syk- and Lyn-dependent phosphorylation of Syk on multiple tyrosines following B cell activation includes a site that negatively regulates signaling. J. Immunol. 161, 5276–5283 (1998).

    CAS  PubMed  Google Scholar 

  66. Hong, J. J., Yankee, T. M., Harrison, M. L. & Geahlen, R. L. Regulation of signaling in B cells through the phosphorylation of Syk on linker region tyrosines. A mechanism for negative signaling by the Lyn tyrosine kinase. J. Biol. Chem. 277, 31703–31714 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Sada, K., Zhang, J. & Siraganian, R. P. Point mutation of a tyrosine in the linker region of Syk results in a gain of function. J. Immunol. 164, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Yankee, T. M., Keshvara, L. M., Sawasdikosol, S., Harrison, M. L. & Geahlen, R. L. Inhibition of signaling through the B cell antigen receptor by the protooncogene product, c-Cbl, requires Syk tyrosine 317 and the c-Cbl phosphotyrosine-binding domain. J. Immunol. 163, 5827–5835 (1999).

    CAS  PubMed  Google Scholar 

  69. Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Pani, G., Kozlowski, M., Cambier, J. C., Mills, G. B. & Siminovitch, K. A. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J. Exp. Med. 181, 2077–2084 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Doody, G. M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Singh, D. K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281–293 (2005). This study identifies ROS in the regulation of BCR signalling. They document the production of ROS following BCR aggregation and show that strength and duration of BCR signals is amplified as a consequence of ROS-mediated phosphatase inhibition.

    Article  CAS  PubMed  Google Scholar 

  74. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Rhee, S. G., Bae, Y. S., Lee, S. R. & Kwon, J. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE Oct 2001 (doi: 0.1126/stke.2000.53.pe1).

  76. Finkel, T. Signal transduction by reactive oxygen species in non-phagocytic cells. J. Leukoc. Biol. 65, 337–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunol. 3, 1129–1134 (2002).

    Article  CAS  Google Scholar 

  78. Shao, D., Segal, A. W. & Dekker, L. V. Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett. 550, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Flaswinkel, H. & Reth, M. Dual role of the tyrosine activation motif of the Ig-α protein during signal transduction via the B cell antigen receptor. EMBO J. 13, 83–89 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kurosaki, T. et al. Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J. Exp. Med. 182, 1815–1823 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Keshvara, L. M., Isaacson, C., Harrison, M. L. & Geahlen, R. L. Syk activation and dissociation from the B-cell antigen receptor is mediated by phosphorylation of tyrosine 130. J. Biol. Chem. 272, 10377–10381 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Oshima, K., Ruhul Amin, A. R., Suzuki, A., Hamaguchi, M. & Matsuda, S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 519, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Cant, C. A. & Ullrich, A. Signal regulation by family conspiracy. Cell. Mol. Life Sci. 58, 117–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Staub, E., Rosenthal, A. & Hinzmann, B. Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal. 16, 435–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Fruehling, S., Swart, R., Dolwick, K. M., Kremmer, E. & Longnecker, R. Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein–Barr virus latency. J. Virol. 72, 7796–7806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fruehling, S. & Longnecker, R. The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235, 241–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Swart, R., Ruf, I. K., Sample, J. & Longnecker, R. Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. J. Virol. 74, 10838–10845 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fukuda, M. & Longnecker, R. Latent membrane protein 2A inhibits transforming growth factor-β1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J. Virol. 78, 1697–1705 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, H. et al. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol. Cell. Biol. 18, 5219–5228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lagunoff, M., Majeti, R., Weiss, A. & Ganem, D. Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA 96, 5704–5709 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prakash, O. et al. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J. Natl Cancer Inst. 94, 926–935 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, H. et al. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nature Med. 4, 435–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Young, L. S. & Rickinson, A. B. Epstein–Barr virus: 40 years on. Nature Rev. Cancer 4, 757–768 (2004).

    Article  CAS  Google Scholar 

  96. Golovkina, T. V., Dudley, J. P. & Ross, S. R. B and T cells are required for mouse mammary tumor virus spread within the mammary gland. J. Immunol. 161, 2375–2382 (1998).

    CAS  PubMed  Google Scholar 

  97. Czarneski, J., Rassa, J. C. & Ross, S. R. Mouse mammary tumor virus and the immune system. Immunol. Res. 27, 469–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Damania, B. Oncogenic γ-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nature Rev. Microbiol. 2, 656–668 (2004).

    Article  CAS  Google Scholar 

  99. Scholle, F., Bendt, K. M. & Raab-Traub, N. Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol. 74, 10681–10689 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morrison, J. A. & Raab-Traub, N. Roles of the ITAM and PY motifs of Epstein–Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of β-catenin signaling. J. Virol. 79, 2375–2382 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, L. et al. The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res. 64, 2774–2781 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Katz, E. et al. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J. Exp. Med. 201, 431–439 (2005). This is the first report documenting direct involvement of ITAM signals in triggering transformation events in non-haematopoietic cells. The link to tonic signalling is indirect but is supported by the absence of known ligands in the experimental model, as described in the text.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ross, S. R., Schofield, J. J., Farr, C. J. & Bucan, M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl Acad. Sci. USA 99, 12386–12390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grande, S. M. et al. Cellular ITAM-containing proteins are oncoproteins in non-hematopoietic cells. Oncogene (in the press).

  105. Roose, J. P. et al. T cell receptor-independent basal signaling via Erk and Abl kinases suppresses RAG gene expression. PLoS Biol. 1, E53 (2003). Using Jurkat T cells, this paper documents one of the most direct biochemical pieces of evidence for the ability of lymphocyte antigen receptors to signal tonically.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Djiane, A., Yogev, S. & Mlodzik, M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121, 621–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Monroe, J. G. Ligand-independent tonic signaling in B-cell receptor function. Curr. Opin. Immunol. 16, 288–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Merchant, M., Caldwell, R. G. & Longnecker, R. The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol. 74, 9115–9124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo, W. & Peterlin, B. M. Activation of the T-cell receptor signaling pathway by Nef from an aggressive strain of simian immunodeficiency virus. J. Virol. 71, 9531–9537 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hamilton, V. T., Stone, D. M., Pritchard, S. M. & Cantor, G. H. Bovine leukemia virus gp30 transmembrane (TM) protein is not tyrosine phosphorylated: examining potential interactions with host tyrosine-mediated signaling. Virus Res. 90, 155–169 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to thank S. Grande for her help in preparing this Review. I also acknowledge the help of L. King and J. Stadanlick for organizational and content editing.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John Monroe's laboratory

Glossary

Complementarity-determining region

(CDR). The most variable parts of immunoglobulins and T-cell receptors, which form loops that make contact with specific ligands. There are three such regions (CDR1, CDR2 and CDR3) in each variable domain.

Immunoreceptor tyrosine-based activation motif

(ITAM). B-cell, T-cell and natural-killer-cell receptors are non-covalently associated with transmembrane proteins that contain one or more ITAMs. The amino-acid sequence of an ITAM is (D/E)XXYXX(L/I)X6–8 YXX(L/I), where X denotes any amino acid. This is tyrosine phosphorylated after engagement of the ligand-binding subunits, which triggers a cascade of intracellular events that results in cellular activation.

SRC-family protein tyrosine kinases

These kinases are characterized by SRC homology 2 (SH2) and SH3 protein-interaction domains and their amino-terminal unique region contains sites for fatty-acid modification. Modification by myristoylation and in many (but not all) cases palmitoylation facilitates membrane localization of these kinases.

SRC homology 2 domain

(SH2 domain). A protein-interaction domain that is commonly found in signal-transduction molecules. It specifically interacts with phosphotyrosine-containing peptides.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). YXXL-based motifs (where X denotes any amino acid) that are similar in sequence to immunoreceptor tyrosine-based activation motifs (ITAMs). They function by recruitment of SRC homology 2 (SH2)-domain-containing phosphatases. Expression of ITIM-containing proteins is largely confined to haematopoietic cells and is therefore thought to be mainly involved in the regulation of ITAM-based signalling, although exceptions to this rule have been proposed.

Lipid raft

Glycosphingolipid- and cholesterol-enriched plasma-membrane microdomains that have been proposed to function as signalling platforms for many receptors. They are often defined by their composition, as well as their physical characteristics, which include resistance to solubilization in mild detergents at 4°C.

Pre-B cells

Cells at a stage of B-cell development in the bone marrow that are characterized by complete immunoglobulin-heavy-chain (IgH) rearrangement in the absence of immunoglobulin-light-chain rearrangement. They express the pre-B-cell receptor, which comprises a surrogate light chain and an IgH. Cells are defined as CD19+cytoplasmic IgM+ or, sometimes, as B220+CD43 cell-surface IgM (by the Hardy classification scheme).

Pro-B cells

Cells at the earliest stage of B-cell development in the bone marrow. They are characterized by incomplete immunoglobulin-heavy-chain rearrangements and are defined as CD19+cytoplasmic IgM or, sometimes, as B220+CD43+ (by the Hardy classification scheme).

μMT mice

Genetically engineered mice that lack one of the exons necessary for transmembrane localization of the immunoglobulin heavy chain. Therefore, although B cells from these mice are able to assemble the pre-B-cell receptor (pre-BCR), they are unable to localize it to the plasma membrane. Because they lack the ability to generate pre-BCR signals, the maturation of B cells in these mice is arrested at the pro-B-cellpre–B-cell checkpoint.

Immature B cell

The first stage of B-cell development at which the mature form of the B-cell receptor (BCR) is expressed. In the bone marrow, these are termed immature B cells, and in the periphery, they are called transitional immature B cells. These B cells are especially directed towards fates that are linked with negative selection and tolerance when they encounter antigen.

Cre–loxP

The Cre (cyclization recombinase) protein from bacteriophage P1 excises DNA that is flanked by recombination sequences called loxP sites. These sequences can be introduced at either end of a gene by homologous recombination. Animals carrying loxP-flanked genes can be made transgenic for Cre, which can be placed under a tissue-specific or inducible promoter. In the cells that express Cre, the loxP sites are recognized, and the DNA between them is excised, leading to tissue-specific or inducible deletion of the gene of interest.

Endoplasmic-reticulum stress

An evolutionarily conserved response to the accumulation of misfolded proteins in the endoplasmic reticulum. This stress can trigger adaptive programmes that limit continued protein synthesis and facilitate elimination of misfolded proteins. Alternatively, apoptotic programmes are linked to stress responses where the levels of misfolded proteins cannot be decreased.

Follicular CD23+ B cell

A recirculating mature B-cell subset that populates the follicles of the spleen and lymph nodes.

Reactive oxygen species

(ROS). Oxygen radicals that are produced by the mitochondrial respiratory chain and, as discussed here, by receptor signalling at the plamsa membrane. In excess, they can cause intracellular and mitochondrial damage, which promotes cell death. However, studies also indicate their involvement in stabilization of receptor-induced activation signals through their ability to inhibit protein tyrosine phosphatases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroe, J. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 6, 283–294 (2006). https://doi.org/10.1038/nri1808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing