Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Not always the bad guys: B cells as regulators of autoimmune pathology

Abstract

When B cells react aggressively against self, the potential for pathology is extreme. It is therefore not surprising that B-cell depletion is seen as an attractive therapy in autoimmune diseases. However, B cells can also be essential for restraining unwanted autoaggressive T-cell responses. Recent advances have pointed to interleukin-10 (IL-10) production as a key component in B-cell-mediated immune regulation. In this Opinion article, we develop a hypothesis that triggering of Toll-like receptors controls the propensity of B cells for IL-10 production and immune suppression. According to this model, B cells can translate exposure to certain microbial infections into protection from chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B-cell-derived interleukin-10: stimuli and effects.
Figure 2: A model for how selective Toll-like receptor triggering of B cells to produce interleukin-10 constrains the autoaggressive response in experimental autoimmune encephalomyelitis.

Similar content being viewed by others

References

  1. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, C. A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nature Immunol. 3, 944–950 (2002).

    Article  CAS  Google Scholar 

  3. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Mauri, C., Gray, D., Mushtaq, N. & Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172, 3422–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Vos, Q., Lees, A., Wu, Z. Q., Snapper, C. M. & Mond, J. J. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 176, 154–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mellor, A. L. et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J. Immunol. 175, 5601–5605 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wingender, G. et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur. J. Immunol. 36, 12–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, H. J. et al. Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. J. Exp. Med. 204, 1911–1922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsushita, T. et al. Inhibitory role of CD19 in the progression of experimental autoimmune encephalomyelitis by regulating cytokine response. Am. J. Pathol. 168, 812–821 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Alwan, M. M., Okkenhaug, K., Vanhaesebroeck, B., Hayflick, J. S. & Marshall, A. J. Requirement for phosphoinositide 3-kinase p110δ signaling in B cell antigen receptor-mediated antigen presentation. J. Immunol. 178, 2328–2335 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  16. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14– Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Croxford, J. L., Miyake, S., Huang, Y. Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nature Immunol. 7, 987–994 (2006).

    Article  CAS  Google Scholar 

  19. Wykes, M., Poudrier, J., Lindstedt, R. & Gray, D. Regulation of cytoplasmic, surface and soluble forms of CD40 ligand in mouse B cells. Eur. J. Immunol. 28, 548–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Desai-Mehta, A., Lu, L., Ramsey-Goldman, R. & Datta, S. K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest. 97, 2063–2073 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amel Kashipaz, M. R. et al. Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus 12, 356–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Díaz-Alderete, A., Crispin, J. C., Vargas-Rojas, M. I. & Alcocer-Varela, J. IL-10 production in B cells is confined to CD154+ cells in patients with systemic lupus erythematosus. J. Autoimmun. 23, 379–383 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Chong, W. P. et al. Association of interleukin-10 promoter polymorphisms with systemic lupus erythematosus. Genes Immun. 5, 484–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Llorente, L. et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 43, 1790–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ishida, H. et al. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J. Exp. Med. 179, 305–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi, T. et al. Cutting Edge: Ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J. Immunol. 168, 9–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Yin, Z. et al. IL-10 regulates murine lupus. J. Immunol. 169, 2148–2155 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Lampropoulou, V. et al. TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 180, 4763–4773 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Barr, T. A., Brown, S., Ryan, G., Zhao, J. & Gray, D. TLR-mediated stimulation of APC: distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 37, 3040–3053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian, J. et al. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 1081–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet. 10, 143–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Dalwadi, H. et al. B cell developmental requirement for the i2 gene. J. Immunol. 170, 1707–1715 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Harris, D. P., Goodrich, S., Gerth, A. J., Peng, S. L. & Lund, F. E. Regulation of IFN-γ production by B effector 1 cells: essential roles for T-bet and the IFN-γ receptor. J. Immunol. 174, 6781–6790 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Harris, D. P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunol. 1, 475–482 (2000).

    Article  CAS  Google Scholar 

  36. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumura, Y., Byrne, S. N., Nghiem, D. X., Miyahara, Y. & Ullrich, S. E. A role for inflammatory mediators in the induction of immunoregulatory B cells. J. Immunol. 177, 4810–4817 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. O'Garra, A. et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int. Immunol. 2, 821–832 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Wei, B. et al. Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proc. Natl Acad. Sci. USA 102, 2010–2015 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitmore, A. C., Haughton, G. & Arnold, L. W. Phenotype of B cells responding to the thymus-independent type-2 antigen polyvinyl pyrrolidinone. Int. Immunol. 8, 533–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Amano, M. et al. CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: β2-microglobulin-dependent and independent forms. J. Immunol. 161, 1710–1717 (1998).

    CAS  PubMed  Google Scholar 

  42. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Evans, J. G. et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 178, 7868–7878 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Moulin, V. et al. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med. 192, 475–482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Day, M. J., Tse, A. G., Puklavec, M., Simmonds, S. J. & Mason, D. W. Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J. Exp. Med. 175, 655–659 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Saoudi, A., Simmonds, S., Huitinga, I. & Mason, D. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J. Exp. Med. 182, 335–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Mizoguchi, A., Mizoguchi, E. & Bhan, A. K. The critical role of interleukin 4 but not interferon γ in the pathogenesis of colitis in T-cell receptor α mutant mice. Gastroenterology 116, 320–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Hoffmann, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Byrne, S. N. & Halliday, G. M. B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J. Invest. Dermatol. 124, 570–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Segal, B. M., Dwyer, B. K. & Shevach, E. M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tuohy, V. K. et al. Modulation of the IL-10/IL-12 cytokine circuit by interferon-β inhibits the development of epitope spreading and disease progression in murine autoimmune encephalomyelitis. J. Neuroimmunol. 111, 55–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, C. M., Deriaud, E., Leclerc, C. & Lo-Man, R. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 22, 467–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Gerth, A. J., Lin, L., Neurath, M. F., Glimcher, L. H. & Peng, S. L. An innate cell-mediated, murine ulcerative colitis-like syndrome in the absence of nuclear factor of activated T cells. Gastroenterology 126, 1115–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. McGeachy, M. J., Stephens, L. A. & Anderton, S. M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. O'Connor, R. A., Malpass, K. H. & Anderton, S. M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 179, 958–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Mann, M. K., Maresz, K., Shriver, L. P., Tan, Y. & Dittel, B. N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178, 3447–3456 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Swallow, M. M., Wallin, J. J. & Sha, W. C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFα. Immunity 11, 423–432 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Rottman, J. B. et al. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nature Immunol. 2, 605–611 (2001).

    Article  CAS  Google Scholar 

  60. Herman, A. E., Freeman, G. J., Mathis, D. & Benoist, C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ashour, H. M. & Niederkorn, J. Y. Peripheral tolerance via the anterior chamber of the eye: role of B cells in MHC class I and II antigen presentation. J. Immunol. 176, 5950–5957 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kosiewicz, M. M. & Streilein, J. W. Intraocular injection of class II-restricted peptide induces an unexpected population of CD8 regulatory cells. J. Immunol. 157, 1905–1912 (1996).

    CAS  PubMed  Google Scholar 

  63. Prinz, M. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456–464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sartor, R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126, 1620–1633 (2004).

    Article  PubMed  Google Scholar 

  65. Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Gursel, M., Verthelyi, D., Gursel, I., Ishii, K. J. & Klinman, D. M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol. 71, 813–820 (2002).

    CAS  PubMed  Google Scholar 

  67. Verthelyi, D. & Zeuner, R. A. Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol. 24, 519–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  69. Leibowitz, U. et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation. J. Neurol. Neurosurg. Psychiatry 29, 60–68 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Correale, J. & Farez, M. Association between parasite infection and immune responses in multiple sclerosis. Ann. Neurol. 61, 97–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Velupillai, P. & Harn, D. A. Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc. Natl Acad. Sci. USA 91, 18–22 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mangan, N. E. et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J. Immunol. 173, 6346–6356 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Danchenko, N., Satia, J. A. & Anthony, M. S. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 15, 308–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Martin, F. & Chan, A. C. B cell immunobiology in disease: evolving concepts from the clinic. Annu. Rev. Immunol. 24, 467–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Pitashny, M. & Shoenfeld, Y. B cell depletion in autoimmune rheumatic diseases. Autoimmun. Rev. 4, 436–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Ferraro, A. J., Drayson, M. T., Savage, C. O. & MacLennan, I. C. Levels of autoantibodies, unlike antibodies to all extrinsic antigen groups, fall following B cell depletion with Rituximab. Eur. J. Immunol. 38, 292–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, C. Y. et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest. 117, 3857–3867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thomas, P. G. et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 171, 5837–5841 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Palanivel, V. et al. B-cell outgrowth and ligand-specific production of IL-10 correlate with Th2 dominance in certain parasitic diseases. Exp. Parasitol. 84, 168–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Velupillai, P., Garcea, R. L. & Benjamin, T. L. Polyoma virus-like particles elicit polarized cytokine responses in APCs from tumor-susceptible and -resistant mice. J. Immunol. 176, 1148–1153 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Jude, B. A. et al. Subversion of the innate immune system by a retrovirus. Nature Immunol. 4, 573–578 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the Deutsche Forschungsgemeinschaft (SFB-650), the Association pour la Recherche sur la Sclérose En Plaques (ARSEP), and the Hertie Stiftung (S.F.); the Wellcome Trust (D.G.); and the Medical Research Council, the Wellcome Trust and the UK Multiple Sclerosis Society (S.M.A.). S.M.A. is an MRC Senior Research Fellow and holds a Research Councils UK Fellowship in Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Anderton.

Related links

Related links

FURTHER INFORMATION

Stephen Anderton's homepage

Glossary

Anterior-chamber-associated immune deviation

(ACAID). Systemic antigen-specific tolerance that develops after inoculation of antigen into the immune-privileged site of the anterior chamber of the eye.

Collagen-induced arthritis

(CIA). An experimental model of rheumatoid arthritis. Arthritis is induced by immunization of susceptible animals with type II collagen.

Epitope spreading

A term originally applied to responses to autoantigens that tend to become more diverse as the response persists.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of multiple sclerosis. EAE can be induced in several mammalian species by immunization with myelin-derived antigens together with adjuvant. The immunized animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord that has several pathological features in common with multiple sclerosis in humans.

Inflammatory bowel disease

(IBD). A chronic condition of the intestine that is characterized by severe inflammation and mucosal destruction. The commonest forms in humans are ulcerative colitis and Crohn's disease. Animal models indicate that they result from the dysregulation of the local immune response to normally harmless commensal bacteria.

Non-obese diabetic (NOD) mice

A mouse strain that has a polygenic susceptibility to spontaneous development of autoimmune, type 1 diabetes. The main component of susceptibility is the unique MHC haplotype H2g7.

T-cell receptor (TCR)-invariant T cells

A term to describe conserved subsets of T cells that express invariant TCR among which are the CD1d-restricted natural killer T cells expressing Vα14–Jα18, and the MR1-restricted mucosal associated invariant T (MAIT) cells expressing Vα19–Jα33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fillatreau, S., Gray, D. & Anderton, S. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 8, 391–397 (2008). https://doi.org/10.1038/nri2315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing