Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles

Abstract

The Toxics Exposure Assessment Columbia-Harvard (TEACH) Project characterized personal, indoor, and outdoor concentrations of a suite of volatile organic compounds (VOCs) for high school students living in New York City (NYC) and Los Angeles (LA). This paper presents the analysis of VOC measurements collected indoors and outdoors for 46 students’ homes in NYC and for 41 students’ homes in LA across two seasons. Dual-sorbent thermal desorption tubes were used for the collection of 15 VOCs and C18 2,4-dinitrophenylhydrazine-coated cartridges were used for the collection of seven aldehydes. Air-exchange rates (AERs) were also measured using a perfluorocarbon tracer gas method. The AERs were lower in the winter in both cities, averaging 1 h−1 in NYC and 1.4 h−1 in LA, compared with 1.8 h−1 in NYC in the summer and 2.5 h−1 in LA in the fall. Higher AERs were generally associated with lower indoor–outdoor ratios with significant differences for the compounds with indoor sources, including chloroform, 1,4-dichlorobenzene, and formaldehyde. Using a mass-balance model to account for AER and other housing parameters, effective source emission rates (SER) were calculated for each compound. Based on I/O ratios and source emission rates, VOCs could be divided into: (1) indoor-source-influenced compounds, (2) those with contributions from both indoor and outdoor sources, and (3) those with mostly outdoor sources. Significant indoor sources were found for the following six compounds (mean emission rates presented): chloroform (0.11 mg/h), 1,4-dichlorobenzene (19 mg/h), formaldehyde (5 mg/h), acetaldehyde (2 mg/h), benzaldehyde (0.6 mg/h), and hexaldehyde (2 mg/h). Although chloroform had variable I/O ratios across seasons, SERs, which accounted for AER, were similar in both cities for both seasons (e.g., LA means 0.12 and 0.11 mg/h in winter and fall, respectively). Formaldehyde had substantially higher indoor emission rates in the summer in NYC compared to winter (3.8 vs. 1.6 mg/h) but lower in the fall in LA compared to winter (4.3 vs. 5.0 mg/h). Uncertainty analysis determined that source strength calculations were not sensitive to measurement error for a subset of homes in LA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. Note that only 188 HAPs are now listed, caprolactam was removed.

References

  • AQMD. Multiple Air Toxics Exposure II (MATES II) Study, Planning Division, South Coast Air Quality Management District, 1999.

  • Arnts R.R., and Tejada S.B. 2,4-Dinitrophenylhydrazine-coated silica gel cartridge method for determination of formaldehyde in air: identification of an ozone interference. Environ Sci Technol 1989: 23: 1428–1430.

    Article  CAS  Google Scholar 

  • Atkinson R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J Phys Chem Reference data 1989: (Monograph no. 1).

  • Bouhamra W., and Elkilani A. Development of a model for the estimation of indoor volatile organic compounds concentration based on experimental sorption parameters. Environ Sci Technol 1999: 33(12): 2100–2105.

    Article  CAS  Google Scholar 

  • Brown S.K. Chamber assessment of formaldehyde and VOC emissions from wood-based panels. Indoor Air 1999: 9(3): 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Brown S.K., Sim M.R., Abramson M.J., and Gray C.N. Concentrations of volatile organic compounds in indoor air – a Review. Indoor Air Int J Indoor Air Qual and Climate 1994: 4(2): 123–134.

    CAS  Google Scholar 

  • Burke J.M., Zufall M.J., and Ozkaynak H. A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expos Anal Environ Epidemiol 2001: V11(N6): 470–489.

    Article  Google Scholar 

  • Caprino L., and Togna G.I. Potential health effects of gasoline and its constituents: a review of current literature (1990–1997) on toxicological data. Environ Health Perspect 1998: 106(3): 115–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • City of Los Angeles. Water Quality Report, Central & Eastern Los Angeles (http://www.ladwp.com/ladwp/cms/ladwp003984.pdf 2002).

  • Clausen P.A., Wilkins C.K., Wolkoff P., and Nielsen G.D. Chemical biological evaluation of a reaction mixture of R-(+)-limonene/ozone – formation of strong airway irritants. Environ Int 2001: 26(7–8): 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Cooke T.F. Indoor air pollutants: a literature review. Rev Environ Health 1991: 9: 137–160.

    Article  CAS  PubMed  Google Scholar 

  • Cox S.S., Little J.C., and Hodgson A.T. Predicting the emission rate of volatile organic compounds from vinyl flooring. Environ Sci Technol 2002: 36(4): 709–714.

    Article  CAS  PubMed  Google Scholar 

  • Daisey J.M., Mahanama K.R., and Hodgson A.T. Toxic volatile organic compounds in simulated environmental tobacco smoke: emission factors for exposure assessment. J Expos Anal Environ Epidemiol 1998: 8(3): 313–334.

    CAS  Google Scholar 

  • Dietz R.N., Goodrich R.W., Cote E.A., and Wieser R.F. Detailed Description and Performance of Passive Perfluorocarbon tracer System for Building Ventilation and Air Exchange Measurements, ASTM STP 904. American Society for Testing and Materials, Philadelphia, PA, 1986.

    Google Scholar 

  • Edwards R.D., Jurvelin J., Saarela K., and Jantunen M. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmos Environ 2001: 35: 4531–4543.

    Article  CAS  Google Scholar 

  • Elkilani A., Bouhamra W., and Crittenden B.D. An indoor air quality model that includes the sorption of VOCs on fabrics. Process Saf Environ Prot 2001: 79(B4): 233–243.

    Article  CAS  Google Scholar 

  • EPA. National Air Toxics Program: The Integrated Urban Strategy Report to Congress. Office of Air Quality Planning and Standards, RTP, NC, 2000.

  • Evans J., Thompson K., and Hattis D. Exposure efficiency: concept and application to perchloroethylene exposure from dry cleaners. J Air Waste Manage Assoc 2000: 50: 1700–1703.

    Article  CAS  Google Scholar 

  • Fan Z.H., Lioy P., Weschler C., Fiedler N., Kipen H., and Zhang J.F. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Technol 2003: 37(9): 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  • Fung K., and Wright B. Measurement of formaldehyde and acetaldehyde using 2,4-dinitrophenylhydrazine-impregnated cartridges during the carbonaceous species methods comparison study. Aerosol Sci. Technol 1990: 12: 44–48.

    Article  Google Scholar 

  • Gordon S., Callahan P., Nishioka M., Brinkman M., O’Rourke M., Lebowitz M., and Moschandreas D. Residential environmental measures in the National Human Exposure Assessment Survey (NHEXAS) pilot study in Arizona: preliminary results for pesticides and VOCs. J Expos Anal Environ Epidemiol 1999: 9: 456–470.

    Article  CAS  Google Scholar 

  • Grosjean E., and Grosjean D. Carbonyl products of the gas phase reaction of ozone with C-5–C-7 alkenes. Environ Sci Techno 1996: 30(4): 1321–1327.

    Article  CAS  Google Scholar 

  • Grosjean E., and Grosjean D. Gas phase reaction of alkenes with ozone: formation yields of primary carbonyls and biradicals. Environ Sci Technol 1997: 31(8): 2421–2427.

    Article  CAS  Google Scholar 

  • Hawthorne A.R., and Matthews T.G. Models for estimating organic emissions from building materials: formaldehyde example. Atmos Environ 1987: 21(2): 419–424.

    Article  CAS  Google Scholar 

  • Hayes R.B., Yin S.N., Dosemeci M., Li G.L., Wacholder S., Travis L.B., Li C.Y., Rothman N., Hoover R.N., and Linet M.S. Benzene and the dose-related incidence of hematologic neoplasms in China. J Nat Cancer Inst 1997: 89(14): 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson A.T., Daisey J.M., Mahanama K.R.R., TenBrink J., and Alevantis L.E. Use of volatile tracers to determine the contribution of environmental tobacco smoke to concentrations of volatile organic compounds in smoking environments. Environ Int 1996: 22(3): 295–307.

    Article  CAS  Google Scholar 

  • Hodgson M., Levin H., and Wolkoff P. Volatile organic-compounds and indoor air. J Allergy Clin Immunol 1994: 94(2): 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Holzwort G. Climatological data on atmospheric stability in United-States. Bul Am Meteorol Soc 1974: 55(5): 507–507.

  • IARC. Benzene. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Industrial Chemicals and Dyestuffs. International Agency for Research on Cancer, Lyon, 1982.

  • Jantunen M.J., Katsouyanni K., Knoppel H., Kunzli N., Lebret E., Maroni M., Saarela K., Sram R., and Zmirou D. Air pollution exposure in European cities: the EXPOLIS Study: final report. Kansanterveyslaitoksen julkaisuja B18/1999. Kuopio, Finland, 1999.

    Google Scholar 

  • Jorgensen R.B., and Bjorseth O. Sorption behavior of volatile organic compounds on material surfaces – the influence of combinations of compounds and materials compared to sorption of single compounds on single materials. Environ Int 1999: 25(1): 17–27.

    Article  CAS  Google Scholar 

  • Jurvelin J., Edwards R., Saarela K., Laine-Ylijoki J., De Bortoli M., Oglesby L., Schlapfer K., Georgoulis L., Tischerova E., Hanninen O., and Jantunen M. Evaluation of VOC measurements in the EXPOLIS study. J Environ Monit 2001: 3(1): 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Kerns W.D., Pavkov K.L., Donofrio D.J., Gralla E.J., and Swenberg J.A. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 1983: 43(9): 4382–4392.

    CAS  PubMed  Google Scholar 

  • Kinney P.L., Chillrud S.N., Ramstrom S., and Spengler J.D. Exposures to multiple air toxics in New York City. Environ Health Perspect 2002: 110(Suppl. 4): 539–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaassen C.D., and Plaa G.L. Relative effects of various chlorinated hydrocarbons on liver and kidney function in mice. Toxicol Appl Pharmacol 1966: 9(1): 139–151.

    Article  CAS  PubMed  Google Scholar 

  • Kleindienst T.E., Corse E.W., Blanchard F.T., and Lonneman W.A. Evaluation of the performance of DNPH-coated silica gel and C18 cartridges in the measurement of formaldehyde in the presence and absence of ozone. Environ Sci Technol 1998: 32(1): 124–130.

    Article  CAS  Google Scholar 

  • Klepeis N.E., Nelson W.C., Ott W.R., Robinson J.P., Tsang A.M., Switzer P., Behar J.V., Hern S.C., and Engelmann W.H. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expos Anal Environ Epidemiol 2001: 11: 231–252.

    Article  CAS  Google Scholar 

  • Lebowitz M.D., O’Rourke M.K., Gordon S., Moschandreas D.J., Buckley T., and Nishioka M. Population-based exposure measurements in Arizona: a phase I field study in support of the National Human Health Assessment Survey. J Expos Anal Environ Epidemiol 1995: 5(3): 297–325.

    CAS  Google Scholar 

  • Lewis C.W., and Zweidinger R.B. Apportionment of residential indoor aerosol VOC and aldehyde species to indoor and, outdoor sources and their source strengths. Atmos Environ Part A General Topics 1992: V26(N12): 2179–2184.

    Article  Google Scholar 

  • Lippmann M. Environmental Toxicants: Human Exposures and Their Health Effects. Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  • Little J.C., Hodgson A.T., and Gadgil A.J. Modeling emissions of volatile organic-compounds from new carpets. Atmos Environ 1994: 28(2): 227–234.

    Article  CAS  Google Scholar 

  • McKone T.E. Human Exposure to VOCs in household tap water: the indoor inhalation pathway. Environ Sci Tech 1987: 21: 1197–1201.

    Article  Google Scholar 

  • Meininghaus R., Gunnarsen L., and Knudsen H.N. Diffusion and sorption of volatile organic compounds in building materials – impact on indoor air quality. Environ Sci Technol 2000: 34(15): 3101–3108.

    Article  CAS  Google Scholar 

  • Molhave L. Volatile organic compounds, indoor air quality and health. Indoor Air 1991: 4: 357–376.

    Article  Google Scholar 

  • Morrison G.C., and Nazaroff W.W. Ozone interactions with carpet: secondary emissions of aldehydes. Environ Sci Technol 2002: 36(10): 2185–2192.

    Article  CAS  PubMed  Google Scholar 

  • Moschandreas D.J., and Odea D.S. Measurement of perchloroethylene indoor air levels caused by fugitive emissions from unvented dry-to-dry dry-cleaning units. J Air Waste Manage Assoc 1995: 45(2): 111–115.

    Article  CAS  Google Scholar 

  • Nielsen G.D., Hougaard K.S., Larsen S.T., Hammer M., Wolkoff P., Clausen P.A., Wilkins C.K., and Alarie Y. Acute airway effects of formaldehyde and ozone in BALB/c mice. Hum Exp Toxicol 1999: 8(6): 400–409.

    Article  Google Scholar 

  • Principe M.A., Stasiuk W.N., and Stern I.A. “Protecting New York City's Drinking Water Sources”. APA Proceedings, 2000.

  • Reiss R., and Roberts P.T. A review of the literature of methods for measuring carbonyls in the atmosphere with DNPH cartridges. Final Report STI-997390-1724-FR, Sonoma Technology Inc., Santa Rosa, CA, 1997.

  • Reiss R., Ryan P.B., Koutrakis P., and Tibbetts S.J. Ozone reactive chemistry on interior latex paint. Environ Sci Technol 1995a: 29: 1906–1912.

    Article  CAS  PubMed  Google Scholar 

  • Reiss R., Ryan P.B., Tibbetts S.J., and Koutrakis P. Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone. J Air Waste Manage. Assoc 1995b: 45: 811–822.

    Article  CAS  Google Scholar 

  • Rinsky R.A. Benzene and leukemia – an epidemiologic risk assessment. Environ Health Perspect 1989: 82: 189–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinsky R.A., Hornung R.W., Silver S.R., and Tseng C.Y. Benzene exposure and hematopoietic mortality: a long-term epidemiologic risk assessment. Am J Ind Med 2002: 42(6): 474–480.

    Article  CAS  PubMed  Google Scholar 

  • Robertson G.L., Lebowitz M.D., O’Rourke M.K., Gordon S., and Moschandreas D.J. The National Human Health Assessment Survey (NHEXAS) Study in Arizona – introduction and preliminary results. J Expos Anal Environ Epidemiol 1999: 9(5): 427–434.

    Article  CAS  Google Scholar 

  • Rosenbaum A.S., Axelrad D.A., Woodruff T.J., Wei Y.H., Ligocki M.P., and Cohen J.P. National estimates of outdoor air toxics concentrations. J Air Waste Manage Assoc 1999: V49(N10): 1138–1152.

    Article  Google Scholar 

  • Sarwar G., Corsi R., Kimura Y., Allen D., and Weschler C.J. Hydroxyl radicals in indoor environments. Atmos Environ 2002: 36(24): 3973–3988.

    Article  CAS  Google Scholar 

  • Seifert B., Becker K., Hoffmann K., Krause C., and Schulz C. The German Environmental Survey 1990/1992 (GerES II): a representative population study. J Expos Anal Environ Epidemiol 2000: 10(2): 103–114.

    Article  CAS  Google Scholar 

  • Seifert B., Mallahn W., Schulz C., and Ullrich D. Seasonal variation of concentrations of volatile organic compounds in selected German homes. Environ Int 1989: 15: 397–408.

    Article  CAS  Google Scholar 

  • Singer B.C., Hodgson A.T., Guevarra K.S., Hawley E.L., and Nazaroff W.W. Gas-phase organics in environmental tobacco smoke. 1. Effects of smoking rate, ventilation, and furnishing level on emission factors. Environ Sci Technol 2002: V36(N5): 846–853.

    Article  Google Scholar 

  • Singh H.B., Salas L.J., Shigeishi H., and Scribner E. Atmospheric halocarbons, hydrocarbons, and sulfur-hexafluoride – global distributions, sources, and sinks. Sciences 1979: 203(4383): 899–903.

    Article  CAS  Google Scholar 

  • Sirju A.P., and Shepson P.B. Laboratory and field investigation of the DNPH cartridge technique for the measurement of atmospheric carbonyl compounds. Environ Sci Technol 1995: 29: 384–392.

    Article  CAS  PubMed  Google Scholar 

  • Sparks L.E., Guo Z., Chang J.C., and Tichenor B.A. Volatile organic compound emissions from latex paint – Part 1. Chamber experiments and source model development. Indoor Air Int J Indoor Air Qual Climate 1999a: 9(1): 10–17.

    CAS  Google Scholar 

  • Sparks L.E., Guo Z., Chang J.C., and Tichenor B.A. Volatile organic compound emissions from latex paint – Part 2 Test house studies and indoor air quality (IAQ) modeling. Indoor Air Int J Indoor Air Qual Climate 1999b: 9(1): 18–25.

    CAS  Google Scholar 

  • Thompson K.M., and Evans J.S. The value of improved national exposure information for perchloroethylene Perc: a case study for dry cleaners. Risk Anal 1997: 17(2): 253–271.

    Article  Google Scholar 

  • Tichenor B.A., Guo Z., Dunn J.E., Sparks L.E., and Mason M.A. The interaction of vapour phase organic compounds with indoor sinks. Indoor Air 1991: 1: 23–35.

    Article  Google Scholar 

  • Wallace L. The Total Exposure Assessment Methodology (TEAM) Study. EPA/600/6-87/002a, Office of Research and Development, US Environmental Protection Agency, Washington, DC, 1987.

  • Wallace L.A. Comparison of risks from outdoor and indoor exposure to toxic chemicals. Environ Health Perspect 1991: V95(NOV): 7–13.

    Article  Google Scholar 

  • Wallace L.A. Human exposure to volatile organic pollutants: implications for indoor air studies. Annu Rev Energy Environ 2001: V26: 269–301.

    Article  Google Scholar 

  • Wallace L.A., Pellizzari E.D., Hartwell T.D., Sparacino C.M., Sheldon L.S., and Zelon H. Personal exposure, indoor–outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Atmos Environ 1985: 19: 1651–1661.

    Article  CAS  Google Scholar 

  • Wallace L.A., Pellizzari E.D., Hartwell T.D., Whitmore R.W., Zelon H., Perritt R.L., and Sheldon L.S. The California TEAM study: breath concentrations and personal exposures to 26 volatile compounds in air and drinking water of 188 residents of Los Angeles, Antioch, and Pittsburg, CA. Atmos Environ 1988: 22: 2141–2163.

    Article  CAS  Google Scholar 

  • Weisel C.P. Assessing exposure to air toxics relative to asthma. Environ Health Perspect 2002: 110: 527–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisel C.P., Zhang J., Turpin B.J., Morandi M.T., Colome S., Stock T.H., and Spekt D.M. Relationship between Indoor, Outdoor and Personal Air (RIOPA), Health Effects Institute and Mickey Leland National Urban Air Toxics Research Center, in press.

  • Weschler C.J., Hodgson A.T., and Wooley J.D. Indoor chemistry: ozone, volatile organic compounds, and carpets. Environ Sci Technol 1992: 26(12): 2371–2377.

    Article  CAS  Google Scholar 

  • Weschler C.J., and Shields H.C. Potential reactions among indoor pollutants. Atmos Environ 1997: 31(21): 3487–3495.

    Article  Google Scholar 

  • Whitmore R.W., Byron M.Z., Clayton C.A., Thomas K.W., Zelon H.S., Pelizzari E.D., Lioy P.J., and Quackenboss J.J. Sampling design, response rates, and analysis weights for the National Human Exposure Assessment Survey (NHEXAS) in EPA region 5. J Expos Anal Environ Epidemiol 1999: 9(5): 381–392.

    Article  Google Scholar 

  • Won D., Corsi R.L., and Rynes M. Sorptive interactions between VOCs and indoor materials. Indoor Air Int J Indoor Air Qual Climate 2001: 11(4): 246–256.

    CAS  Google Scholar 

  • Woodruff T.J., Axelrad D.A., Caldwell J., Morello-Frosch R.A., and Rosenbaum A.S. Public health implications of 1990 air toxics concentrations across the United States. Environ Health Perspect 1998: 106: 245–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff T.J., Caldwell J., Cogliano V.J., and Axelrad D.A. Estimating cancer risk from outdoor concentrations of hazardous air pollutants in 1990. Environ Res 2000: V82(N3): 194–206.

    Article  Google Scholar 

  • Woolfenden E.A., and McClenny W.A. Compendium of methods for the determination of toxic organic compounds in ambient air: method TO-17. EPA 625/R-96/010b, US Environmental Protection Agency, Cincinnati, OH, 1997.

  • Woutersen R.A., Appelman L.M., Wilmer J., Falke H.E., and Feron V.J. Subchronic (13-week) inhalation toxicity study of formaldehyde in rats. J Appl Toxicol 1987: 7(1): 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Zartarian V.G., Ozkaynak H., Burke J.M., Zufall M.J., Rigas M.L., and Furtaw E.J. A modeling framework for estimating children's residential exposure and dose to chlorpyrifos via dermal residue contact and nondietary ingestion. Environ Health Perspect 2000: 108: 505–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J., He Q., and Lioy P.J. Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ Sci Technol 1994a: 28(1): 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J.F., Wilson W.E., and Lloy P.J. Indoor air chemistry – formation of organic-acids and aldehydes. Environ Sci Techno 1994b: 28(11): 1975–1982.

    Article  CAS  Google Scholar 

  • Zhao D., Little J.C., and Hodgson A.T. Modeling the reversible, diffusive sink effect in response to transient contaminant sources. Indoor Air 2002: 12(3): 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X., and Mopper K. Measurement of sub-parts-per-billion levels of carbonyl compounds in marine air by a simple cartridge trapping procedure followed by liquid chromatography. Environ Sci Technol 1990: 24: 1482–1485.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Contract NUATRC-96-01B of the Mickey Leland National Urban Air Toxics Research Center. Additional support was provided by Columbia's National Institute of Environmental Health Sciences (NIEHS) Center for Environmental Health in Northern Manhattan (ES09089) and the Columbia Center for Children's Environmental Health (NIEHS ES09600 and US EPA R827027) and also the Harvard NIEHS Center Grant ES000002 and the Akira Yamaguchi endowment fund at the Harvard School of Public Health. Special thanks to the field and laboratory staffs: Jamie Ross, Dee Pederson, David Johnson, Maneesha Aggarwal, Suresh Ratnam, Sean Wallace, Helen Parise, Jose Vallarino, Antonio Chemor, Brian LaBrecque, and Scott Forsberg. We are very grateful to the teachers and the schools and especially to the participants in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja N Sax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sax, S., Bennett, D., Chillrud, S. et al. Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. J Expo Sci Environ Epidemiol 14 (Suppl 1), S95–S109 (2004). https://doi.org/10.1038/sj.jea.7500364

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500364

Keywords

This article is cited by

Search

Quick links